
Root hydrotropism is controlled via a
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Plants can acclimate by using tropisms to link the direction of growth to environmental conditions. Hydrotropism allows
roots to forage for water, a process known to depend on abscisic acid (ABA) but whose molecular and cellular basis
remains unclear. Here we show that hydrotropism still occurs in roots after laser ablation removed the meristem and root
cap. Additionally, targeted expression studies reveal that hydrotropism depends on the ABA signalling kinase SnRK2.2
and the hydrotropism-specific MIZ1, both acting specifically in elongation zone cortical cells. Conversely, hydrotropism,
but not gravitropism, is inhibited by preventing differential cell-length increases in the cortex, but not in other cell types.
We conclude that root tropic responses to gravity and water are driven by distinct tissue-based mechanisms. In addition,
unlike its role in root gravitropism, the elongation zone performs a dual function during a hydrotropic response, both
sensing a water potential gradient and subsequently undergoing differential growth.

Tropic responses are differential growth mechanisms that roots
use to explore the surrounding soil efficiently. In general, a
tropic response can be divided into several steps, comprising

perception, signal transduction and differential growth. All of
these steps have been well characterized for gravitropism, where
gravity-sensing cells in the columella of the root cap generate a
lateral auxin gradient, whilst adjacent lateral root cap cells transport
auxin to epidermal cells in the elongation zone, thereby triggering
the differential growth that drives bending1–4. In gravity-stimulated
roots, the lateral auxin gradient is transported principally by AUX1
and PIN carriers3–5.

Compared with gravitropism, the tropic response to asymmetric
water availability, hydrotropism, has been far less studied.
Previously, it was reported that surgical removal or ablation of the
root cap reduces hydrotropic bending in pea6–8 and Arabidopsis
thaliana9, suggesting that the machinery for sensing moisture
gradients resides in the root cap. It has also been reported that

hydrotropic bending occurs due to differential growth in the
elongation zone7,10. However, unlike gravitropism, hydrotropism
in A. thaliana is independent of AUX1- and PIN-mediated auxin
transport11,12. Indeed, roots bend hydrotropically in the absence of
any redistribution of auxin detectable by auxin-responsive reporters13,14.
Instead, root hydrotropism requires signalling by the hormone abscisic
acid (ABA)12. These findings imply that, compared to gravitropism,
hydrotropism requires a distinct signalling mechanism15.

The involvement of ABA in hydrotropism was initially suggested
by aberrant responses in A. thaliana mutants deficient for ABA
synthesis or response12. More recently, loss-of-function ABA
receptor and response mutants that are insensitive or hypersensitive
to ABA have been shown to be insensitive or hypersensitive to a
hydrotropic stimulus, respectively16. In addition, hydrotropism in
A. thaliana roots requires a gene called MIZU-KUSSEI1 (MIZ1)17,
which is upregulated by application of 10 µM ABA18. Despite
miz1 roots being oblivious to water potential gradients, they

1Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK. 2Plant & Crop Sciences, School of Biosciences, University of
Nottingham, Nottingham LE12 5RD, UK. 3Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan. 4Department of Plant Biotechnology
and Bioinformatics, Ghent University, (Technologiepark 927), 9052 Ghent, Belgium. 5VIB Center for Plant Systems Biology, (Technologiepark 927), 9052
Ghent, Belgium. 6School of Computer Science, University of Nottingham, Nottingham NG8 1BB, UK. 7Faculty of Science, Yamagata University, Yamagata
990-8560, Japan. 8Centre for Mathematical Medicine & Biology, University of Nottingham, Nottingham NG7 2RD, UK. 9School of Mathematics, University
of Birmingham, Birmingham B15 2TT, UK. 10School of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, UK. 11Agricultural and
Environmental Sciences, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK. 12Department of Forest Genetics and Plant Physiology,
SLU, S-901 83 Umea, Sweden. 13College of Science, KSU, Riyadh, Saudi Arabia. 14Department of Plant Biology, Carnegie Institution for Science, 260 Panama
Street, Stanford, California 94305, USA. 15Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientificas-Universidad
Politecnica de Valencia, ES-46022 Valencia, Spain. 16Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan. 17Graduate School of Materials
Science, Nara Institute of Science & Technology, Ikoma 630-0101, Japan. 18Biology Department, University of Massachusetts, Amherst, Massachusetts
01003-9297, USA. †These authors contributed equally to this work. ‡Present address: Computational and Systems Biology, John Innes Centre, Norwich
NR4 7UH, UK (J.A.F.). Centre Nacional d’Anàlisi Genòmica (CNAG-CRG), 08028 Barcelona, Spain (R.A.). School of Agriculture and Food Science,
University College Dublin, Belfield Campus, Dublin 4, Ireland (S.R.T.). School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA,
UK (J.A.R.). §Denotes co-corresponding authorship. *e-mail: malcolm.bennett@nottingham.ac.uk; hideyuki@ige.tohoku.ac.jp

ARTICLES
PUBLISHED: 8 MAY 2017 | VOLUME: 3 | ARTICLE NUMBER: 17057

NATURE PLANTS 3, 17057 (2017) | DOI: 10.1038/nplants.2017.57 | www.nature.com/natureplants 1

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

mailto:malcolm.bennett@nottingham.ac.uk
mailto:hideyuki@ige.tohoku.ac.jp
http://dx.doi.org/10.1038/nplants.2017.57
http://www.nature.com/natureplants


nevertheless bend like wild type in response to gravity17. The MIZ1
sequence contains a DUF617 domain that is conserved among the
genomes of terrestrial plants, but absent in algae and animals,
suggesting a role for hydrotropism in the evolution of land
plants17. A functional MIZ1:MIZ1-GFP fusion protein is expressed
in lateral root cap cells as well as cortex and epidermis cells in the
meristem and elongation zone18,19. However, it is unclear whether
this broad expression pattern is necessary for MIZ1’s function in
hydrotropism or whether ABA signal transduction components in
general have to be expressed in specific root tip tissues for a
hydrotropic response. The present study describes a series of
experiments in A. thaliana designed to identify the root tissues
essential for a hydrotropic response. We report that MIZ1 and the
key ABA signal-transduction component SnRK2.2 expressed
specifically in the root cortex are sufficient to drive hydrotropism,
and conversely that hydrotropism is blocked by inhibiting the
ability of specifically the cortex to execute a differential growth
response. Our results support a re-evaluation of hydrotropic
signalling, revealing the importance of the cortex and the elongation
zone for signal perception as well as bending.

Results
The root meristem and columella are dispensable for
hydrotropism. To uncover which root cell types and zones are
required during a hydrotropic response in A. thaliana roots, we
ablated cells using a femtosecond laser. Successful ablation of the
columella cells was confirmed by propidium iodide staining of
root tissues (Fig. 1a,b) and hydro- and gravitropism assays
performed as described previously11,17 (for details on
hydrotropism assays used in this paper, see Supplementary
Fig. 1). Whilst columella ablation successfully inhibited the
gravitropic response as previously reported1, it did not inhibit the
hydrotropic response (Fig. 1c,e). We suggest that the discrepancy
with earlier experiments arose from their being performed under
adverse growth conditions, as indicated by roots elongating more
than an order of magnitude slower than those used here.
Importantly, the ablated roots in this study elongated at an
equivalent rate as the intact roots throughout both gravitropism
and hydrotropism assays (Fig. 1d,f ). Further probing of the region
necessary for stimulus perception showed that even when ablation
encompassed essentially the entire meristem, hydrotropism was
scarcely affected (Supplementary Fig. 2). Crucially, when seedlings
with ablated root cap or meristem were placed in an assay system
that lacked the moisture gradient, ablated roots responded in the
same way as intact roots with only minimal bending,
demonstrating that laser ablation per se did not induce a response
that mimicked hydrotropism (Supplementary Fig. 2).

Because this apparent dispensability of the columella conflicts
with previous results with laser ablation9, we independently
validated the experiment in the split-agar system by excising the
distal region of the root tip (∼250 µm) manually. As with laser
ablation, manual excision of columella and meristem did not
induce bending in the absence of a water potential gradient
(Supplementary Fig. 2), demonstrating that root tip removal does
not mimic a hydrotropism response. Most significantly, manual
excision of columella and meristem did not disrupt hydrotropic
bending in the presence of a water potential gradient, giving
results comparable to whole roots (Supplementary Fig. 2). Whilst
we cannot exclude the possibility that hydrotropic stimuli are
perceived in the root cap when that tissue is present, our ablation
and excision results demonstrate that roots are able to sense as
well as respond to water potential gradients within the
elongation zone.

Root hydrotropism depends on the ABA signalling component
SnRK2.2. ABA represents a critical signal for numerous plant
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Figure 1 | Laser ablation of columella cells affects the gravitropic but
not the hydrotropic response of roots. a,b, Confocal fluorescence
micrograph of propidium iodide-stained primary root tips before
(a) and after (b) femtosecond-laser ablation of the columella; scale bar,
100 µm. c,d,Time-course study of root gravitropic curvature (c) and
root growth (d). In c, 0° equals horizontal. e,f, Time-course study of
root hydrotropic curvature (e) and root growth (f). In e, 0° equals
vertical. The hydrotropism assay was performed using the split-agar
system with 812 mM sorbitol. Values are mean ± s.e.m. of a
representative experiment, n = 3–6, from three independent experiments.
Asterisks indicate statistically significant differences (*P < 0.05, **P < 0.01,
Student’s t-test).
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abiotic stress responses20 including root hydrotropism. ABA
responses are mediated by a negative regulatory signalling module
involving soluble receptors of the START-domain superfamily
(PYR/PYL/RCARs), clade A, type 2C protein phosphatases
(PP2Cs) and subclass III Snf1-related kinases (SnRK2s)20. ABA
binds to PYR1/PYL/RCAR, which induces a conformational
change that allows the receptor proteins to bind to, and thereby
inhibit, PP2Cs21,22. PP2Cs dephosphorylate SnRK2s, suppressing

their activity; thus, SnRK2 activity increases in the presence of
ABA due to PP2Cs being bound to the PYR1/PYL/RCAR ABA
receptors23. When active, the SnRK2s phosphorylate transcription
factors and other downstream targets20,23.

To investigate how ABA controls hydrotropism, we characterized
a double mutant lacking the ABA signalling kinases SnRK2.2 and
SnRK2.3 (ref. 24). Although retaining some ABA responsiveness,
this double mutant was selected for experiments because, in contrast
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Figure 2 | ABA signalling in the cortex is crucial for root hydrotropism. a, Schematic drawing indicating tissues in the root tip; grey: lateral root cap, red:
epidermis, green: cortex, yellow: endodermis. b, Kinetics of hydrotropic curvature after transferring seedlings to split-agar plates with 400 mM sorbitol.
Values are mean ± s.e.m., n = 29–40. c, Expression of SnRK2.2:SnRK2.2-GFP in the root tip; scale bar, 100 µm. d, Hydrotropic curvature 12 h after transfer
to split-agar plates with 400 mM sorbitol. Values are mean ± s.e.m., n = 24–31. Different letters indicate statistically significant differences (p < 0.05,
Fisher’s least significant difference (LSD)). e,f, Expression pattern of MIZ1-GFP fusion protein under control of (e) the WER and (f) PIN2 promoters with HSP
terminator. Left-hand image shows an overlay of fluorescence from GFP (green) and propidium iodide (red), right-hand image shows GFP only. Arrow
indicates the approximate rootward boundary of the elongation zone; scale bar, 100 µm. g, Hydrotropic curvature 12 h after transfer of seedlings to the
moisture gradient in air assay system. Values are mean ± s.e.m. of three independent experiments, n = 35–44. Different letters indicate statistically significant
differences (P <0.05, Tukey honest significant difference (HSD) test). Col, A. thaliana Columbia-0 accession.
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to most mutants in ABA perception, it is neither dwarfed nor wilty.
We initially assayed hydrotropism in a split-agar-based system25.
Hydrotropism in the snrk2.2 snrk2.3 double mutant was strongly
attenuated, but was restored in the snrk2.2 snrk2.3 double mutant
expressing the SnRK2.2 gene under the control of its own promoter
(Fig. 2b). Identical results were obtained using a moisture gradient
in air hydrotropic assay (Supplementary Fig. 5). Hence, the SnRK2.2
kinase appears to be required for hydrotropism.

As the snrk2.2 snrk2.3 double mutant had slightly shorter roots
and a reduced growth rate compared to wild type (Supplementary
Fig. 3), we compared the growth rates of the double mutant on
half-strength Murashige and Skoog (MS) medium and hydrotropism
plates and found them to be comparable (Supplementary Fig. 3),
ruling out hypersensitivity of the snrk2.2 snrk2.3 double mutant
to sorbitol. In addition, we performed split-agar hydrotropism
assays with younger wild-type seedlings to assess whether a
reduction in tip angle was caused simply by a reduced root
growth rate. Roots bent with similar kinetics despite differences in
length and growth rate, indicating that hydrotropic bending is not
proportional to root growth rate (Supplementary Fig. 3).

Hydrotropism requires SnRK2.2 signalling only in the root
cortex. To gain insight into the tissue specificity of hydrotropism,
we created a translational GFP fusion to the SnRK2.2 genomic
sequence and expressed the reporter in the snrk2.2 snrk2.3 double
mutant background. In the resulting lines, roots regained wild-type

sensitivity to 10 µM ABA (Supplementary Fig. 4) and bent
hydrotropically in the moisture gradient in air assay (but not the
split-agar assay) (Supplementary Fig. 4). We assume that the
differences in hydrotropic response obtained using the different
assays could be due to the moisture in air gradient providing a
steeper water potential gradient than the split-agar assays. Hence,
the translational reporter appeared partially functional. Using
confocal imaging, SnRK2.2-GFP signal was detected in nuclear
and cytoplasmic compartments, consistent with the sub-cellular
localisation of its known regulatory targets26,27. Moreover, at the
tissue scale, SnRK2.2:SnRK2.2-GFP was ubiquitously expressed
throughout the root apex, including root cap and elongation
zone (Fig. 2c).

To pinpoint the root tissue where SnRK2.2 is required during a
hydrotropic response, we expressed the SnRK2.2 genomic sequence
in the snrk2.2 snrk2.3 double mutant background using a suite of
tissue- and zone-specific promoters. SnRK2.2 expressed under the
control of the meristem and transition zone-specific RCH1
promoter28 complemented the snrk2.2 snrk2.3 hydrotropic defect
(Fig. 2d). Surprisingly, rescue failed when SnRK2.2 was expressed
specifically in the root cap (SOMBRERO29, SMB:SnRK2.2),
epidermis and lateral root cap (WEREWOLF30, WER:SnRK2.2) or
endodermis (SCARECROW31, SCR:SnRK2.2) (Fig. 2d). By contrast,
double mutant roots bent hydrotropically as the wild type when
expressing SnRK2.2 in just the cortex (Co2 (ref. 32), Co2:SnRK2.2)
(Fig. 2d). SnRK2.2 expression levels in the Co2:SnRK2.2 line were
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low in comparison to non-rescuing epidermal, lateral root cap or
endodermal driven lines, demonstrating that mutant rescue is not
simply a dose effect (Supplementary Fig. 5). In addition, we
confirmed the hydrotropism response of the Co2:SnRK2.2 line
using the moisture in air gradient assay (Supplementary Fig. 5).
Hence, root hydrotropism appears to require the ABA response
machinery specifically in the cortex.

Cortex-specific MIZ1 expression rescues the miz1 hydrotropic
defect. To independently assess tissue specificity for the
hydrotropic response, we determined which tissues require MIZ1,
a protein previously identified as essential for hydrotropism and
localized to cortex, epidermis and lateral root cap19. We used
various promoters to express MIZ1-GFP in specific tissues in the
miz1 background (Supplementary Fig. 6). When constructs that
included the MIZ1 terminator were used, MIZ1-GFP expression
driven by RCH1 was detected in the meristem, by SMB in the
root cap, by SCR in the endodermis and by COR and by Co2 in
the cortex, all as expected28,29,31–33 (Supplementary Fig. 6).
Compared to SCR or Co2, the COR promoter drove MIZ1-GFP
expression farther into the elongation zone. By contrast, the WER
promoter drove MIZ1-GFP expression not only in the epidermis
and lateral root cap, as expected30, but also in the cortex. Like
COR, expression from WER continued well into the elongation

zone. Note that none of these constructs altered root growth rate
appreciably (Supplementary Fig. 6).

Using the tissue-specific MIZ1-GFP constructs, we assayed
hydrotropism using the moisture gradient in air method, which
gave approximately 80° bending after 12 h. As expected, hydrotropic
bending was fully rescued by expressing MIZ1-GFP under theMIZ1
promoter (Supplementary Fig. 6). By contrast, little or no hydrotropic
curvature resulted when MIZ1-GFP was expressed in root cap
(SMB), in endodermis (SCR) or in the meristem (RCH1). Mutant
complementation was only partial using Co2 to drive MIZ1-GFP
expression, but rescue was complete employing either WER or
COR promoters, revealing a requirement for MIZ1 in the elongation
zone (Supplementary Fig. 6). Mutant rescue was also complete when
MIZ1-GFP expression was driven by the PIN2 promoter, which, like
WER, drives expression in lateral root cap, epidermis and cortex,
which for the latter tissues continues well into the elongation
zone (Fig. 2e–g). Finally, when WER-driven expression was
removed from the cortex, which happened if the native MIZ1
terminator was replaced by a terminator from a heat-shock
protein (HSP), miz1 rescue essentially failed (Fig. 2e,g). Identical
responses for WER- and PIN2-driven MIZ1-GFP expression were
obtained using the split-agar assay (Supplementary Fig. 5). Taken
together, these results show that hydrotropic bending requires
MIZ1 expression specifically in the root cortex and that the
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expression domain must span at least part of the elongation zone.
This conclusion is consistent with laser ablation and SnRK2.2
expression experiments that, when taken collectively, establish the
functional importance of the cortex within the elongation zone
for the hydrotropic response.

Low levels of ABA promote root elongation. Root cortical cells
abut the endodermis (Fig. 2a), a recently reported site of ABA
accumulation in roots34. Hence, ABA response machinery in the
cortex would be ideally positioned to sense lateral movement of
ABA from the endodermis into outer root tissues, presumably
triggering growth responses. In roots, whilst high ABA levels
inhibit growth24, low levels of this hormone promote elongation at
low water potential35–37. To understand the ABA-dependent
growth mechanism underlying hydrotropism, we next investigated
the effect of low doses of ABA on root growth. Transferring
seedlings onto 100 nM ABA stimulated root growth rate in the
wild type but had minimal effect on snrk2.2 snrk2.3 (Fig. 3a and
Supplementary Fig. 7). Comparing meristem and elongation zone
of those roots, 100 nM ABA appeared to change neither the
length nor cell number within the meristem but significantly
increased the length of the elongation zone in wild type and Co2:
SnRK2.2 complementation lines (Fig. 3c and Supplementary
Fig. 7). The increased root growth rate was accompanied by both
an increased rate of cell production and an increased mature cell
length (Supplementary Fig. 7 and Fig. 3b). Taken together, these
data suggest that low doses of ABA in these non-stressed plants
stimulate rates of cell division and elemental elongation.

To examine tissue specificity in the promotion of root growth by
ABA, we analysed nuclear ploidy of specific tissues by performing
cell sorting and DNA-content measurements. Significantly,
100 nM ABA stimulated endoreplication specifically in root cortical
cells, as evidenced by the increased fraction of 8C nuclei at the
expense of 4C (Fig. 3e). By contrast, 100 nM ABA had little if any
effect on endoreplication in either atrichoblast or endodermal
cells (Fig. 3d,f ). Hence, ABA appears to specifically trigger
changes in cell cycle machinery in just the cortex, consistent with
a fundamental role for this tissue in mediating hydrotropism.

Hydrotropism is driven by differential cortical cell expansion.
One might question whether an asymmetry of growth-promoting
mechanisms within a single tissue could provide sufficient
mechanical leverage to trigger root curvature. To explore whether
such changes in the dynamics of cortical cells are sufficient to drive
root bending during hydrotropism, we developed a mathematical
model (see Methods and Supplementary Note 1), taking advantage
of recent theoretical work that successfully recapitulates the root’s
growth rate profile by ascribing distinct mechanical contributions
to the various tissues38. For a short period following exposure to
the water potential gradient, a small group of cortical cells on the
dry side of the root were treated as undergoing early entry into
rapid elongation, changing their mechanical properties to be the
same as cells in the elongation zone. This differential elongation,
coupled with the cell-to-cell adhesion typical for plant cells, caused
the root midline to bend in this region (Supplementary Fig. 8).

To assess the model further, we quantified the growth kinetics of
hydrotropically bending roots by using image analysis, resolving
both elemental elongation and curvature. These experimental data
resembled the evolution of root tip angle predicted by the model
(Supplementary Fig. 8). Hence, the root cortex emerges as a
plausible driver to accomplish hydrotropic bending. Taken together,
the experimental data and model simulations support our
hypothesis that hydrotropism is driven by differential elemental
expansion within the root cortex.

If hydrotropic bending is driven by an asymmetric expansion of
cortical cells in the elongation zone, we reasoned that hydrotropism

could be blocked by interfering with the orderly progression of cells
through the growth zone. To test this, we took advantage of the
overexpression phenotype of the cyclin-dependent kinase inhibitor
SIAMESE (SIM), in which cell division is inhibited and endoreplica-
tion is stimulated39. We used a GAL4-VP16-driven transactivation
system to co-express SIM and a nuclear-localized GFP marker
specifically in either epidermis, cortex or endodermis. In each case,
root meristem cells overexpressing SIM were enlarged (Fig. 4a–c)
but cells in adjacent tissues were not detectably affected and were
of similar length to cells of roots expressing only the GFP marker
(Fig. 4d,e). Next, we tested each tissue-specific, SIM-overexpressing
line for hydrotropism. Roots overexpressing SIM in root epidermis
or endodermis bent indistinguishably from the parental lines,
whereas SIM overexpression in the cortex blocked root hydrotropic
bending (Fig. 4f ). By contrast, roots of every SIM overexpression
line retained a wild-type response to gravity (Fig. 4g), revealing
that SIM overexpression in the cortex did not simply prevent all
differential root growth processes.

Discussion
We report that root tropic responses to gravity and water are driven
by distinct molecular and tissue-based mechanisms. In the case of
gravity, root re-orientation is sensed by columella cells at the root
tip1, triggering the formation of a lateral auxin gradient across the
root with higher concentrations on the lower side of the root40,41.
This auxin gradient is then transported via the lateral root cap to
epidermal cells in the elongation zone3 where it elicits downward
root bending by stimulating expansion on the upper side and
inhibiting it on the lower-side42. By contrast, here, laser ablation
experiments demonstrate that perceiving a water potential gradient
and fully responding thereto requires neither meristem, nor lateral
root cap nor columella (Fig. 1). Hence, unlike its role in root
gravitropism, the elongation zone is able to perform a dual function
during a hydrotropic response, both sensing a water potential
gradient and undergoing differential growth. This conclusion
stands despite the possibility of meristem and root cap participating
in hydrotropism in intact roots, for example by integrating signals
from water and gravity.

We also confirm that root hydrotropism uses the hormone ABA
and that the ABA signal transduction components SnRK2.2 and

Cortex

Root cap
(columella)

Lateral
root cap

Elongation
zone

Meristem

Higher
water
potential

Lower
water
potential

SnRK2.2 and MIZ1 function
Sensing moisture gradients
Differential growth

Transition
zone

SnRK2.2  M
IZ1

SnRK2.2  M
IZ1

Figure 5 | Conceptual model for root hydrotropism. SnRK2.2 and MIZ1
expression in cortex cells of the transition and elongation zone are required
to mediate the ABA-dependent differential growth response to a water
potential gradient. Perception of the water potential gradient does not
require tissues in the root cap or meristem, but takes place in the transition
and elongation zones where the differential growth response occurs.
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SnRK2.3 play a key role in regulating root re-orientation.
Surprisingly, targeted SnRK2.2 expression studies in snrk2.2
snrk2.3 (Fig. 2) revealed the critical importance during hydrotrop-
ism of ABA response machinery just in the cortex. The importance
of this specific root tissue for hydrotropism was further supported
by the response depending on cortical expression of MIZ1 (Fig. 2).
Taken together, our results demonstrate that ABA and MIZ1
responses in the cortex of the root elongation zone play a central
role in the hydrotropic response of A. thaliana roots (Fig. 5).
Hence, root gravitropic and hydrotropic responses are driven by
distinct signals and tissue-based mechanisms. Consistent with
our conclusion, Krieger et al.43 recently described the opposing
effect of reactive oxygen species on these tropic responses and the
distinct positions at which roots bend during gravitropic and
hydrotropic responses.

A key question for hydrotropic research is to understand how a
modest gradient in water potential across the root is perceived
(and presumably amplified) into a growth response. Mechano-
sensing, differential movement of water, ions or signalling molecules
all represent likely candidates, but detection methods that are more
sensitive than those currently available will be necessary to get to the
root of this plant environmental response.

Methods
Ablation of root-tip cells using laser-microscopy systems. For micro-beam laser
irradiation, 4-day-old seedlings were aligned in a micro-chamber comprising two glass
coverslips (25 × 60 mm2 and 24 × 24 mm2, Matsunami) and a seal (TaKaRa Slide Seal
for in situ PCR, Takara Bio). Themicro-chamberwas filled with low-melting agar (0.5×
MS medium, 0.4% (w/v) sucrose (Wako Pure Chemical Industries), 0.2% (w/v) low-
melting agarose (SeaPlaque; FMCBioProducts)).These sampleswere put on the stage of
a microscope (Nikon ECLIPSE TiE, Nikon) and irradiated with an N2 pulsed micro-
beam laser through Coumarin 440 with an averaged power of 330 kW for a 3–5
nanosecond pulse (MicroPoint PIJ-3-1; Andor Technology). For femtosecond-laser
irradiation, seedlings were placed on 0.5× MS medium on a glass slide. Amplified
femtosecond laser pulses from a regeneratively amplified Ti:sapphire femtosecond laser
system (IFRIT; 780 ± 5 nm, 230 fs, <1 mJ per pulse, 1 kHz, Cyber Laser Inc.) were
focused onto root cap cells through a ×10 objective lens (UPlanSApoNA0.4,Olympus)
on a confocal laser scanning microscope (FV1000-BX51, Olympus). Laser pulses (200)
were detectedwith amechanical shutter (gate time: 200 ms) anddelivered to the sample.
The laser pulsewas collimated bydual convex lenses before themicroscope and the laser
focal point was tuned to the plane of the image. The diameter of the laser focal point,
which is consistentwith the beamwaist, was about 1 µm.A neutral density filterwas put
between the laser andmicroscope and used to tune the laser pulse energy to around 400
nJ per pulse, which is about four times larger than the threshold energy for cavitation
bubble generation inwater (100 nJper pulse). Laser-ablated seedlingswere incubated on
0.5× MS medium for 1 h in a vertical position before performing further assays.

Root tropism and growth assays. The hydrotropism assays shown in Fig. 1 and
Supplementary Fig. 5b–e were performed as described previously using a split-agar
system with 812 mM sorbitol11. Gravitropism assays shown in Fig. 1 and
Supplementary Fig. 2 were performed using 1% agar medium with or without
0.5× MS medium as described previously17. Hydrotropism assays shown in Fig. 2g
and Supplementary Figs 2g–l, 4e,f, 5f,g and 6 were performed using a moisture
gradient in air as described previously11. Four-day-old seedlings were used for all
tropism assays described above.

Hydrotropism assays shown in Figs 2b,d and 4 and Supplementary Figs 2m, 3, 4d
and 8 were performed as previously described25 using 5-day-old seedlings in a split-
agar system with 400 mM sorbitol.

For gravitropism assays shown in Fig. 4, 5-day-old seedlings were transferred to
new plates containing 0.5× MS medium with 1% agar. After acclimatisation for 2 h
in the controlled environment room, plates were rotated by 90°. Images of seedlings
were acquired using an automated imaging platform44 and root tip angle and length
determined using the Fiji image processing package (http://fiji.sc/Fiji).

For assessing root growth response to ABA, 5-day-old seedlings were transferred
to new plates containing 0.5× MS medium with the indicated amount of ABA
(Sigma). To determine meristem cell number and length, longitudinal images of root
tips clearly showing the cortex cell file were taken with a confocal laser scanning
microscope, using propidium iodide to stain cell walls. Starting from the quiescent
centre, the length of individual cortex cells was determined using the Cell-o-Tape
macro45 for Fiji. The mean length of meristem cells was calculated using ten cells
from the rapid amplifying region of the meristem (cells 10–19 counting shootward
from the quiescent centre) and the end of the meristem deemed to have been reached
when consecutive cells had reached or exceeded the mean length by two. Cell
production rates were calculated as previously described46.

Modelling root bending. A mechanical model has been developed to describe
hydrotropism-associated root bending. The approach38 exploits the large aspect ratio
of the root, which allows a relatively simple description of bending in terms of the
stretch and curvature of the root midline. A viscoplastic constitutive relation is
adopted (viscous flow where the yield stress is exceeded), with the yield stress of
cortical cells on the dry side of the root modified in response to a hydrotropic
stimulus; the resulting partial differential equations for the dependence of
midline stretch and curvature in terms of time and arc length are solved numerically
by a finite-difference approach. Further details are given in the Supplementary
Note 1, Section 2.

Data availability. The data that support the findings of this study are available from
the corresponding authors upon request.
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