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a b s t r a c t

The widespread availability of three-dimensional imaging and computational power has fostered a

rapid increase in the number of biologists using finite element analysis (FEA) to investigate the

mechanical function of living and extinct organisms. The inevitable rise of studies that compare finite

element models brings to the fore two critical questions about how such comparative analyses can and

should be conducted: (1) what metrics are appropriate for assessing the performance of biological

structures using finite element modeling? and, (2) how can performance be compared such that the

effects of size and shape are disentangled? With respect to performance, we argue that energy efficiency

is a reasonable optimality criterion for biological structures and we show that the total strain energy

(a measure of work expended deforming a structure) is a robust metric for comparing the mechanical

efficiency of structures modeled with finite elements. Results of finite element analyses can be

interpreted with confidence when model input parameters (muscle forces, detailed material properties)

and/or output parameters (reaction forces, strains) are well-documented by studies of living animals.

However, many researchers wish to compare species for which these input and validation data are

difficult or impossible to acquire. In these cases, researchers can still compare the performance of

structures that differ in shape if variation in size is controlled. We offer a theoretical framework and

empirical data demonstrating that scaling finite element models to equal force: surface area ratios

removes the effects of model size and provides a comparison of stress-strength performance based

solely on shape.

Further, models scaled to have equal applied force:volume ratios provide the basis for strain energy

comparison. Thus, although finite element analyses of biological structures should be validated

experimentally whenever possible, this study demonstrates that the relative performance of un-

validated models can be compared so long as they are scaled properly.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Finite element analysis (FEA) is a computer-based technique
used by engineers to predict the behavior (i.e. response) of
engineered products and manufacturing processes to anticipated
loading conditions, thereby enabling the design of these systems
to be optimized digitally with minimum physical prototyping and
testing (Zienkiewicz and Taylor, 2000). Biologists have only
recently begun to harness the power of FEA to study the
mechanical functions of organisms, but it has already led to new
insights into the feeding mechanics of living and extinct
vertebrates (Alexander, 2006; Barrett and Rayfield, 2006;
McHenry et al., 2006; Thomassen et al., 2007), insect flight and

mechanoreception (Combes and Daniel, 2003; Dechant et al.,
2006; Wootton, 2003), and plant biomechanics (Fourcaud and Lac,
2003; Niklas, 1999). To date only a few studies have focused
specifically on comparing models of different species (Dumont
et al., 2005; Macho et al., 2005; McHenry et al., 2006; Wroe et al.,
2007a), but interest in both inter- and intraspecific comparative
analyses will increase as more finite element models are
developed. The inevitable rise of studies that compare finite
element models brings to the fore two critical questions
about how such comparative analyses can and should be
conducted: (1) what metrics are appropriate for assessing
the performance of biological structures using finite element
modeling? and, (2) how can performance be compared such that
the effects of size and shape are disentangled?

The first question requires us to integrate concepts of
‘‘performance’’ derived from biology and engineering. The second
question, disentangling size and shape, is ubiquitous in biology.
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Size has a profound impact on the biology of organisms, but it is
often of interest to remove the effects of size and compare only
shapes. This is particularly true in the field of functional
morphology, where shape differences can signify fundamental
shifts in how organisms accomplish mechanical tasks such
as locomotion or feeding (Alexander, 2003; Koehl, 1996;
Schmidt-Nielsen, 1984). Comparing the performance of shapes is
particularly critical in finite element modeling studies because
researchers often want to compare species that lack the in vivo

experimental data needed to calibrate and validate FEA results.
When such data are lacking it is impossible to know if a FEA
returns accurate absolute values of stress, strain or reaction force.
However, FEA can be used to compare some aspects of
performance in two or more models if differences in size are
controlled for. Because finite element models exist in silico they
can be rescaled very easily. Thus they present a clear opportunity
to investigate the importance of shape in mediating how
structures perform under specified loading conditions.

In this paper, we present criteria for evaluating the mechanical
performance of biological structures using FEA and demonstrate
how linear, areal and volumetric approaches to scaling these
structures affect mechanical performance measures that reflect
strength and efficiency. The results are considered in the context
of a practical discussion of the uses and limitations of finite
element modeling in comparative biology. Not unexpectedly, the
choice of an appropriate scaling method requires careful con-
sideration of the data that are available to build and validate the
finite element models and the biological questions being asked.

2. Methods and results

In contrast to kinematic analyses that describe rigid-body
movements, FEA predicts deformations in systems that are
constrained against rigid-body motion (Zienkiewicz and Taylor,
2000). In FEA the physical domain or shape of the system under
study is approximated by a contiguous mesh of simple polyhedral
shapes called ‘finite elements’, connected together at ‘nodes’,
which are the vertices of the polyhedrons. The finite elements are
assigned the appropriate material properties, the model is
constrained against rigid-body motion, loads are applied, and
the subsequent computer solution yields the complete response of
the system in terms of its deformation, strains, and stresses at any
location within the model.

Properly constructed finite element models yield solutions to
the underlying continuum mechanics problem that approximate
and converge to the theoretically exact solution. FEA is also
versatile in that each of the many parts of a model (i.e. finite
elements) may be assigned unique material properties, loads, and
may have different shapes and sizes. This means that geome-
trically complex systems with complex loading conditions and
even spatially dependent material properties can be modeled to
any desired level of accuracy, limited only by computational
resources and required modeling effort.

2.1. Performance concepts in comparative biology and engineering

Like many words in biology, ‘‘performance’’ has several specific
meanings. The concept of organismal performance is rooted in the
field of ecological morphology, where performance is a measure-
ment of an organism’s ability to perform ecologically relevant
tasks that impact fitness (Arnold, 1983; Lande and Arnold, 1983).
Common examples of performance measures include sprint
speed, a proxy for the ability to avoid predators, and bite force,
a measure of potential dietary breadth based on food hardness.
Performance data are typically correlated with fairly gross

measures of morphological variation (e.g., relative head size or
leg length) to document form–function associations. In contrast,
finite element modeling offers biologists a tool for exploring the
mechanical performance of specific structures. Here, concepts of
performance can be borrowed from engineering, where structures
are evaluated in terms of their strength and/or efficiency. Using
these kinds of performance measures, finite element modeling
can be used to explore the mechanistic links between morphology
and performance that produce correlations we see in ecological
studies. In this way FEA can help to elucidate the mechanisms that
underlie ecologically relevant variation in organismal design.

Engineers use FEA to evaluate the performance of structures
using measures of structural strength and shape optimality. With
respect to strength, FEA of an automobile chassis subject to
collision-type loads can accurately predict whether or not the
chassis will be permanently bent, enabling engineers to optimize
the design of the chassis for minimum weight and maximum
structural reliability. The same kind of failure analysis can be
applied to biological systems. In both cases, failure occurs when
stress exceeds the maximum stress that a structure can withstand.
Cortical bone, like most biological materials, is elastic and fails
under a ductile model of fracture (Nalla et al., 2003). von Mises
stress is a good predictor of failure under ductile fracture and is
probably therefore an appropriate metric for comparing the
relative strength of models of bones. Most comparative finite
element analyses of bone are linear—they do not incorporate
inelastic material behaviors. (Note, however, that recent biome-
dical work has employed complex nonlinear material models,
such as the nonlinear Drucker–Prager model, for defining bone
failure and material behavior beyond yielding (Bessho et al., 2007;
Mercer et al., 2006)). In linear analyses it is not necessary to load
finite element models to failure in order to visualize where failure
will occur. When all other variables are held constant, changing
the absolute magnitude of the applied loads does not change the
predicted relative distribution of stress in a structure. Therefore,
the potential for structural failure is always highest in the region
of highest stress.

Structures can also fail through excessive deflection, even if no
ductile yielding or brittle fracture has occurred. In this context,
failure refers to a structure that is too flexible to perform a given
task. For example, a limb bone must not deflect excessively, even
elastically, if it is to support an animal’s weight. Excessive
deflections occur when structures lack adequate stiffness. Failure
by excessive deflection is directly proportional to the elastic
compliance of a structure. Structures with higher stiffness (i.e.
lower compliance) per unit weight are more optimal than
structures with a lower stiffness (higher compliance) per unit
weight. Fig. 1 illustrates linear force vs. deflection curves for two
different systems to which the same force has been applied. Most
simply, these systems could be uni-axial springs in which
deflection corresponds to the displacement of the spring end
due to an applied force and the slope of the load-deflection curve
(k) is the stiffness of the spring. In a more complex analogy, each
force-deflection curve could represent the effective stiffness
characteristic of a different 3-D biological structure. In this case,
force corresponds to the magnitude of total force applied to the
system, the deflection is the deflection magnitude at any point of
interest, and the slope is the effective stiffness of the structure.
The deflection of the stiffer system is d1 and the deflection of the
more compliant system is d2.

Whether modeling simple springs or complex geometries, the
area under each load-deflection curve (A) is equal to the work
done (W) by the force (F) in elastically deforming the structure;
this work is stored in the structure as elastic strain energy. As is
always the case in conservative elastic systems, the work done by
the externally applied loads is identical to the system’s elastic
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strain energy. Hence, for system 1, W1 ¼ A1 ¼ Fmaxd1/2 and for
system 2, W2 ¼ A2 ¼ Fmaxd2/2. Accordingly, although the same
force has been applied to each system, more work has been
expended to deform the more compliant system (system 2),
resulting in more elastically stored strain energy. For a simple
spring system F ¼ kd and its strain energy is given by kd2/2. For a
finite element model the system’s total strain energy U is
computed by the formula:

U ¼ 1
2fDg

T½K�fDg (1)

where {D}1 is the vector of nodal displacements and [K] is the
stiffness matrix of the finite element model (Cook et al., 2002).
Most finite element codes will directly provide the model’s total
strain energy. If this information is not readily available, it can be
computed from the work done by the applied loads WLoads

by summing up the work done by each externally applied nodal
force ~Fi:

U ¼WLoads ¼
1

2

XN

i¼1

~Fi �
~Di (2)

where N is the number of externally applied nodal loads, ~Di is the
resulting displacement vector of node i, and the symbol � denotes
the vector dot product operator. When comparing finite element
models of two different biological structures under a given
applied load, the smaller the model’s total strain energy, the less
work that has been expended in deforming the structure and
therefore the more efficient the structure is from a work
perspective. It is worth noting that many shape optimization
algorithms implemented in commercial finite element tools are
based on this same concept. From an engineering perspective,
optimal structures maximize static stiffness (or minimize com-
pliance) for a given volume of material, thereby optimizing work
efficiency (Bendsøe, 1989, 1995; Bendsøe and Kikuchi, 1988).

Using total strain energy as a performance variable assumes
that structures that transmit forces as efficiently as possible
(by maximizing the stiffness to weight ratio) are at an advantage
from the perspective of energy savings and work efficiency. We
suggest that the total-strain-energy performance measure works
well for most mineralized tissues. It is important to point out,
however, that a number of more compliant biological structures

function by storing strain energy and then releasing it quickly.
This is the fundamental principal underlying the function of the
legs in small, jumping insects (reviewed in James et al., 2007), the
tendons in the legs of vertebrates (e.g., Alexander, 2002; Biewener,
2006), the ballistic tongues of amphibians and chameleons
(Deban et al., 2007; Lappin et al., 2006; Van Leeuwen et al.,
2000), and the raptorial appendages of mantis shrimp (Patek
et al., 2007). These flexible, compliant structures accumulate
strain energy by applying relatively small forces over long
distances and then releasing them quickly to generate relatively
large forces that act over short distances. For these specialized
systems, the ability to maximize total strain energy per volume of
material (i.e. volumetric average strain energy density) may be a
good performance measure. In this paper, however, we explicitly
focus on systems that seek to minimize this measure of work.

2.2. Scaling finite element models

When comparing finite element models, performance mea-
sures based on structural strength require that force per unit area
be held constant, while strain energy performance requires
identical loads and volumes. Physical material testing has shown
that failure by ductile yielding of a material is closely correlated
with von Mises stress, while failure by brittle fracture is closely
correlated with maximum principal stress (Juvinall and Marshek,
2005). Even for the complex nonlinear Drucker–Prager material
failure model which employs both hydrostatic stresses and
deviatoric stresses to define the yield criteria, failure is directly
related to the stress tensor. Thus, in all three cases, and indeed in
the vast majority of material failure theories including fatigue
models for cyclic loading, stress governs failure, and stress is
directly proportional to force and inversely proportional to area.
Therefore, in order to scale a model and preserve its stress-limited
strength-to-weight ratio, the load applied to the scaled model
must be adjusted such that the original value of force per unit
surface area is preserved. On the other hand, strain energy is
proportional to the square of the load and to volume. Therefore, in
order to compare total strain energy between two models, the
total applied loads and volumes of the models must be identical.

Given these performance criteria, we offer fundamental scaling
guidelines for linear finite element models that enable compar-
isons of both stress-based performance and work efficiency. When
comparing the impact of shape on the strength performance of
finite element models of biological structures, one can remove the
effects of size by scaling the applied loads to maintain a constant
value of force per unit surface area.

We recommend that the models be scaled to the same surface
area and the same total load be applied to each one. Then any
differences in the stress and strain fields between the two models
are entirely due to differences in shape, and contour plots of stress
and strain can be compared. If on the other hand rescaling the
models and/or loads to yield identical force:surface area ratio
(or force:volume ratio, see below) is difficult or time consuming,
one can still make comparisons by appropriately scaling the
results. Suppose we have two finite element models A and B of
different shapes that have been loaded with total force values FA

and FB and analyzed. We now wish to compare the performance of
the two models but they have different volumes (VA and VB) and
different surface areas (SAA and SAB). For strength comparison the
models should have the same applied force per surface area. To
match force:surface area ratios, one can scale the force applied
to model B, creating a new model, called B0, to match the
force:surface area ratio of model A. Thus,

F 0B ¼
SAB

SAA

� �
FA (3)
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Fig. 1. Load-deflection curves representing two different linear elastic structures

(structures 1 and 2). The area under each load-deflection curve (A) is equal to the

work done (W) by the force (F) in elastically deforming the structure. The slope of

each load-deflection curve (k) is the stiffness and d is the deflection of each

structure.

1 {D}T in Eq. (1) denotes the transpose of the vector of nodal displacements.
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where F 0B is the force applied to model B. Because stress and strain
are linearly proportional to the applied force, model B0 does not
have to be analyzed. Instead, one can multiply the stress and/or
strain metric (i.e., maximum von Mises stress, maximium
principal strain, etc.) obtained from model B due to load FB by
the ratio of F 0B=FB

� �
and then compare this result to the stress

and/or strain metric obtained from model A. For example, if the
metric is maximum principal stress s1 max then

s1 maxð ÞB0 ¼
SAB

SAA

� �
FA

FB

� �
s1 maxð ÞB (4)

This value can be compared to the maximum principal stress
obtained from model A. Similarly, for strain energy comparison
the models should have the same force per volume ratio. Strain

energy is directly proportional to the load squared and inversely
proportional to the cube root of volume. Therefore, to compare the
strain energy in model A, the strain energy computed in model B

can be scaled according to the formula

UB0 ¼
VB

VA

� �1=3 FA

FB

� �2

UB (5)

This value of strain energy can then be compared to the value
obtained for model A.

To illustrate this scaling rule, we took a recently published
finite element model of a bat skull (Grosse et al., 2007) and
rescaled it to 0.25� , 0.5� , 1� , 2� and 4� its original volume.
We then completed finite element analyses of each rescaled
model in which the ratio of applied loads to linear distances,
model area and model volume were held constant. Fig. 2A
illustrates that values of von Mises stress total remain constant
across finite element models only when the ratio of applied load
relative to model area is constant. (Note that in this special case of
resizing a single model, [volume]2/3 or [length]2 can be sub-
stituted for area: see below.) Scaling loads in direct proportion to
either total volume of the model or a linear measurement will
lead to artificially elevated or depressed stress values. Fig. 2B
shows that strain energy increases linearly when the force:area
ratio is preserved, reflecting the fact that the stress and strain
state (and therefore strain energy density) is preserved. On the
other hand, strain energy is constant when force is scaled in
proportion to the sixth root of the volume ratio. These results, as
well as a simple mechanics example provided in Appendix A,
validate our isometric dimensional scaling axiom. In Appendix A
we also illustrate why forces scaled according to volume ratio to
the 1/6th power preserves the total strain energy.

2.3. Case study: a comparative finite element analysis

Researchers often wish to use FEA to compare some aspect of
performance in species for which there are no experimental data
to use as input parameters or calibration points. In these cases it is
difficult to know whether an analysis provides accurate predic-
tions of absolute values of stress, strain or reaction force. However,
it is still possible to directly compare the impact of variation in
shape on the relative performance of the models if one first
controls for variation in size. To illustrate this shape-based
comparison, we took previously published models of two bat
skulls, Cynopterus brachyotis and Artibeus jamaicensis (Dumont
et al., 2005; Grosse et al., 2007) and scaled them to the same
surface area. [In this case 189.4 mm2 but the choice of surface area
is arbitrary and does not affect the comparison made here]. We
then applied the same total muscle force (100 N) to each model
using BoneLoad, a computer program we developed to auto-
matically distribute and apply muscle forces across curved bone
surfaces (Grosse et al., 2007).

Although we chose to rescale the models to the same surface
area and apply the same forces, it not necessary to rescale models
at all so long as the forces applied to each model result in identical
force:area ratios. It is important to emphasize that (volume)2/3

and (length)2 cannot be substituted for area when comparing
models that differ in shape. Models with different shapes do not
necessarily have the same surface area to volume ratios. For
example, at the same surface area, the volume of the Artibeus skull
is 471.6 mm3 while that of the Cynopterus skull is 433.7 mm3. This
problem is equally complicated for linear dimensions. Given the
identical surface area, the distance between the tips of the canines
is 5.9 mm Artibeus and 4.4 mm in Cynopterus. Rescaling these
models to the same bicanine breadth would result in
very different surface areas and therefore inherently biased
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Fig. 2. The scaling of von Mises stress (A) and strain energy (B) in a single finite

element model at 0.25� , 0.5� , 1� , 2� and 4� original volume with applied

forces scaling with linear dimensions (triangles), area (squares), model volume

(circles), and the sixth root of volume (diamonds).
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comparisons of von Mises stress. Moreover, while bicanine
breadth is homologous, it has been molded by separate evolu-
tionary trajectories and masks broader shape differences between
the two species. This is not to say that a researcher cannot re-size
models to comparable volumes or linear dimensions as personal
preference dictates. In these cases, however, it is imperative to use
identical ratios of force to surface area if the goal is to compare
model performance in terms of strength. This can be achieved
simply by applying different forces to the two models to maintain
equal force:area ratios.

For our Artibeus and Cynopterus models the proportion of the
total force assigned to the temporalis, masseter and pterygoid
muscles was based on the relative muscle mass of the three
muscles (which are known and differ between the two species)
and both models were assigned average material properties for

cortical bone (Young’s modulus ¼ 2�104 MPa, Poisson’s ratio ¼
0.3 (Dumont et al., 2005)). The models were constrained from
rigid-body motion in a way that mimicked bilateral canine biting.
A single node in each glenoid fossa was constrained to establish
an axis of rotation through the temporomandibular joints and a
single node at the tip of each canine was constrained to generate a
bite reaction force.

Fig. 3 illustrates that despite the general similarities in skull
form, the distribution and magnitude of von Mises stress differ
between the two models.

Stress is spread widely across the rostrum of the Artibeus

model while stress is concentrated in the zygomatic arches of
Cynopterus. Fig. 3 also illustrates that maximum von Mises stress
is highest in the Cynopterus model, indicating that it is the weaker
of the two structures under this specific loading condition. Under
higher loads Cynopterus would fail first and failure would begin
along the zygomatic arches. In terms of work, the total strain
energy is lower for Artibeus than for Cynopterus (6.37�10�4

versus 8.06�10�4 J), indicating that it is more efficient, stiffer
structure that undergoes less deformation. From a structural
perspective, the shape of the Artibeus skull is superior to the shape
of the Cynopterus skull under this loading condition (i.e.,
Cynopterus may in fact perform better that Artibeus under a
different loading condition). Artibeus’ superior performance in
terms of work efficiency is expressed visually by differences in the
magnitude of von Mises stress and quantitatively by its total
strain energy value being 21% lower than that of Cynopterus for
the same force:volume ratio.

In practice, many finite element analyses of biological systems
contain artificially high stresses and strains at specific points due to
kinematic constraints, point loads, or even sharp corners. These
artificially high stresses are due to the fact that the theory of
elasticity admits stress and strain singularities due to these
idealizations, and the finite element solution approximates the
exact solution admitted by the theory of elasticity. A singularity is a
point at which stress or strain is infinite. Such singularities are
indicative of the fact that these modeling idealizations are physically
impossible (i.e., a point load is an artificial construct). In accordance
with Saint Venant’s principle, these modeling artifacts are highly
localized and do not impact stress values in other regions of the
model (Cook and Young, 1985). However, they do make it difficult to
extract accurate values of maximum von Mises stress values from
the analysis. In contrast, although strain energy is theoretically
infinite at points that admit a stress or strain singularity, the strain
energy contained in a finite volume of material encompassing such
points is finite. Thus, strain energy is not sensitive to the presence of
idealized kinematic constraints, point loads, etc. Therefore it is a
more reliable and informative metric of overall model performance
with respect to work efficiency.

When interpreting the results of this or any other finite
element analyses of complex biological systems, it is critical to
acknowledge that the model is unlikely to include all of the
variables that affect the system. Our models, for example, do not
include the effects of passive or active soft tissues and variations
in material properties that may alter stress pathways or mitigate
stress concentrations. These kinds of effects are neglected largely
because, at present, they are not fully understood. Fortunately,
experimental biomechanical studies are making significant pro-
gress toward quantifying these variables. For the present, an
inherent assumption of this (and most other) comparative finite
element analyses of skeletal systems is that the effects of soft
tissues and variations in material properties are comparable
across the species being compared.

In addition to strength- and work-based measures of perfor-
mance that are relevant to any model, we can also ask questions
about the relative performance of the Artibeus and Cynopterus
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Fig. 3. The distribution of von Mises stress in finite element models of the skulls of

Artibeus jamaicensis (top) and Cynopterus brachyotis (bottom). Models are scaled to

the same surface area (189.4 mm2) and loaded with the same total muscle force

(100 N). Warm colors indicate high stress and cool colors indicate regions of low

stress. Areas shown in white exceed the stress scale.
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models that are particular to feeding systems. Specifically, we can
compare whether bite performance varies between the models
scaled for stress comparisons by summing the node reaction
forces at the canine constraints to get an estimate of bite force. It
is essential to point out that this does not provide accurate
estimates of absolute bite force. Rather, it speaks to the efficiency
of force transfer from the chewing muscles to the bite points. At
the same surface area and under the same loading conditions, bite
reaction force is relatively higher in A. jamaicensis (20.4 N) than in
C. brachyotis (11.3 N). One can directly compare these bite force
values only if the applied force to surface area ratio is constant and

the models have the same surface area. If the force to surface area
ratio is the same but the surface areas of the models differ, the
larger model will always return higher bite reaction forces. In
these cases, therefore, one must compare the ratio of muscle force
to bite force.

3. Discussion

A fundamental question arising from this study is whether the
strength- and work-based performance measures we describe are
biologically meaningful. The utility of ecomorphological measures of
performance lies in their link to fitness via selection; individuals
that perform better (bite harder, run faster, etc.), have more
offspring. Engineering-based measures of performance are valuable
to the extent that they evaluate the efficacy of the mechanisms that
drive ecomorphological correlations. Of the two performance
criteria we propose, total strain energy is a direct measure of the
energy expended to deform a structure with a given volume. The
second law of thermodynamics dictates that some of the elastic
strain energy stored in a structure when it is loaded will be lost
upon unloading. Therefore, structures that are more efficient in
terms of work (i.e., they store less strain energy) will lose less energy
per unit volume than structures that are less efficient.

Energy is a fundamental currency for all organisms and it is
reasonable to hypothesize that selection for energy efficiency is
common in many systems. The extent to which selection for
energy efficiency tunes the evolution of biomechanical systems is
debated. On one hand evolutionary processes have given rise to an
amazing diversity of locomotor and feeding systems. The presence
of functional tradeoffs and energy-saving mechanisms in these
systems provides at least corroborating evidence that selection for
energy efficiency exists. On the other hand, experimental studies
indicate that some bones exhibit strong strain gradients and are
not fully stressed during routine (or even extreme) loading,
suggesting that they are not optimally designed for strength (e.g.,
Ross and Metzger, 2004). Although this raises the possibility that
selection for mechanical efficiency has not shaped these struc-
tures, it is also likely that they perform competing functions
which would be compromised if mechanical efficiency were the
sole selective force. In this light, selection for mechanical
efficiency is one of many processes guiding the evolution of
organismal design. FEA allows investigators to evaluate the
performance (i.e. strength and energy efficiency) of structures
that exhibit subtle variations in shape. It is the responsibility of
biologists who use FEA to determine whether differences in
performance are meaningful with respect to ecologically, and thus
evolutionarily, relevant variation in function.

The ability to compare model performance while controlling
size and loading parameters is a significant strength of FEA. By
altering a single variable while holding the others constant,
researchers can use FEA to evaluate individually the influence of
the magnitude and vectors of applied forces, shape, and size on
model performance (Grosse et al., 2007; Strait et al., 2007; Tanner
et al., 2008). Although not the focus of this paper, FEA also enables

researchers to isolate and observe the effect of varying material
properties on model performance (e.g., Strait et al., 2005; Wroe
et al., 2007b). This level of experimental control is only available
when working with models; living organisms are simply not as
easily manipulated.

Despite the power of FEA as a modeling tool, only in the best of
circumstances can one compare the performance of models that
differ in size and shape. In order for this kind of comparison to
return meaningful results, a researcher must have a great deal of
confidence in the input variables. For analyses of feeding
mechanics, this means that bite force, muscle forces and/or bone
strain must be available in the form of in vivo experimental data. It
is inherently appealing to report bite force values derived from
FEA because bite force is commonly used as a measure of
organismal performance. However, it is critical to acknowledge
that predictions of bite force that are not validated with in vivo

experimental data return estimates that are unquestionably
hypothetical and, in the case of fossil organisms, un-testable.

On the other hand, this study illustrates that comparing the
relative performance of finite element models does not necessarily
require bone strain or bite force data if the models are properly
scaled. In order to compare only the effects of model shape on
structural strength, size must be controlled either by scaling models
to the same surface area and applying the same muscle forces or,
alternatively, by keeping models at their normal sizes and simply
applying the same ratio of force to surface area. The relative

performance of the models with respect to strength (von Mises or
maximum principal stress) is identical in either case. Similarly, to
remove the effects of size and compare the work efficiency of two
models, the ratio of force to volume must be held constant.

As the popularity of FEA continues to rise among biologists, it
is important to remain circumspect about what it can and cannot
do. Most importantly, FEA is a modeling technique. At best, results
can only be of as high a quality as the structures, material
properties and loading conditions that are entered into the
analysis. We are strong advocates of building and loading finite
element models using data that are carefully collected in
laboratory and/or field settings. At this point in time, it is not
entirely clear how robust finite element models are in the face of
altering input parameters. However, several studies show that
patterns of stress distribution and strain magnitudes predicted by
FEA are more sensitive to variation in model shape than to
variation in material properties and muscle loading (e.g., Ross
et al., 2005; Strait et al., 2005). These results are consistent with
the concept of the sensitivity of stress and strain to geometry. For
example, for a homogeneous cylinder under torsion, maximum
shear stress and strain are inversely proportional to d3, where d is
the diameter of the cylinder. However, maximum shear stress is
independent of its shear modulus G and maximum shear strain is
inversely proportional to G. Therefore, changes in d have a larger
effect on stresses and strains than do changes in G.

Comparative biologists are now beginning to validate their
finite element models experimentally (Kupczik et al., 2007; Ross
et al., 2005), something that engineers have been doing for a very
long time, and we applaud and encourage that effort. In the
meantime, this study demonstrates that it is still possible to
compare the relative strength and work performance of models
that are not experimentally validated so long as those compar-
isons are done correctly.
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Appendix A

In this appendix we show with simple mechanics the relation-
ships between strain, stress, total strain energy, and volumetric
average strain energy density with respect to isometric scaling of
a model. Consider a simple round bar under uni-axial loading as
shown in Fig. A1.

The subscript 0 indicates unscaled dimensional and load
values. The bar is under a state of uni-axial stress and strain with
strain, stress, total strain energy, and volumetric average strain
energy density given by

�0 ¼
P0

EA0
¼

P0

EpR2
0

s0 ¼
P0

A0
¼

P0

pR2
0

U0 ¼
P2

0L0

2EpR2
0

ðuaveÞ0 ¼
P2

0

2Ep2R4
0

We now wish to scale this model isometrically and examine
how these quantities are affected. Let the dimensional scale factor
be a constant C, so that for the scaled model L ¼ CL0 and R ¼ CR0.
Note that C is also given by (V/V0)1/3. For the scaled model one has

� ¼
P

EpR2
¼

P

EpC2R2
0

s ¼ P

pC2R2
0

U ¼
P2L

2EpR2
¼

P2CL0

2EpC2R2
0

¼
P2L0

2EpCR2
0

uave ¼
P2

2Ep2R4
¼

P2

2Ep2C4R4
0

Note stress, strain, strain energy, and strain energy density are
inversely proportional to the dimensional scaling factor C, raised
to the various powers as shown in the equations above. Thus, if
the force is unchanged, increasing the size of a model isome-
trically will decrease its stress and strain by the volume ratio to
the 2

3 power, decrease its total strain energy by the cube root of the
volume ratio, and decrease its strain energy density by the volume
ratio to the 4

3 power.
If we let P ¼ C2 P0, the state of strain, stress, and volumetric

strain energy density in the scaled model will be exactly equal to
that of the unscaled model, and total strain energy will change
linearly with respect to volume:

� ¼
C2P0

EpC2R2
0

¼
P0

EpR2
0

¼ �0

s ¼ C2P0

pC2R2
0

¼
P0

pR2
0

¼ s0

U ¼
ðC2P0Þ

2L0

2EpCR2
0

¼
C3P0L0

2EpR2
0

¼ C3U0 ¼ V=V0

� �
U0

uave ¼
ðC2P0Þ

2

2Ep2C4R4
0

¼
P2

0

2Ep2R4
0

¼ uaveð Þ0

Since surface area of the scaled model will be equal to C2 times
the surface area of the unscaled model, this confirms our scaling
axiom that maintaining the same ratio of force to surface area
when scaling models will preserve stress and strain states. Finally,
let us determine the force scaling rule needed such that the total
strain energy is preserved for models that are isometrically scaled.
This condition requires that

U0 ¼
P2

0L0

2EpR2
0

¼ U ¼
P2L0

2EpCR2
0

which yields

P ¼
ffiffiffi
C
p

P0 ¼ V=V0

� �1=6
P0.

Note that these results can be shown to be true for a beam
under bending and a bar under torsion, and we have shown it be
true numerically with a complex structure under a non-uniform
3-D state of stress and strain.
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