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ABSTRACT
This work introduces two mechanics-based approaches to modeling

muscle forces exerted on curvilinear bone structures and compares the
results with two traditional ad hoc methods of muscle loading. These new
models use a combination of tensile, tangential, and normal traction loads
to account for muscle fibers wrapped around curved bone surfaces. A com-
puter program was written to interface with a commercial finite element
analysis tool to automatically apply traction loads to surface faces of ele-
ments in muscle attachment regions according to the various muscle model-
ing methods. We modeled a highly complex skeletal structure, the skull of a
Jamaican fruit bat (Artibeus jamaicensis), to compare the four muscle-load-
ing methods. While reasonable qualitative agreement was found in the
states of stress of the skull between the four muscle load modeling methods,
there were substantial quantitative differences predicted in the stress
states in some high stressed regions of the skull. Furthermore, our mechan-
ics-based models required significantly less total applied muscle force to
generate a bite-point reaction force identical to those produced by the ad
hoc muscle loading models. Although the methods are not validated by in
vivo data, we submit that muscle-load modeling methods that account for
the underlying physics of muscle wrapping on curved bone surfaces are
likely to provide more realistic results than ad hoc approaches that do not.
We also note that, due to the geometric complexity of many bone struc-
tures—such as the skull analyzed here—load transmission paths are diffi-
cult to conceptualize a priori. Consequently, it is difficult to predict spatially
where the results of finite element analyses are likely to be compromised by
using ad hoc muscle modeling methods. For these reasons, it is recom-
mended that a mechanics-based method be adopted for determination of
the proper traction loads to be applied to skeletal structures due to muscu-
lar activity. Anat Rec, 290:1069–1088, 2007. ! 2007 Wiley-Liss, Inc.
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Finite element analysis (FEA) is a numerical tool that
engineers use to investigate the behavior of physical sys-
tems such as engineered products and manufacturing
processes. As a predictive analysis tool, FEA has devel-
oped to the point where high technology companies now
rely on it heavily to reduce or eliminate expensive and
time-consuming prototype fabrication and testing (Ulrich
and Eppinger, 2000). Very recently, comparative biolo-
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gists have recognized the utility of FEA for predicting
the behavior of complex systems and are beginning to
use it to investigate the functional adaptations of living
organisms (Korioth et al., 1992; Spears et al., 1993;
Wootton et al., 2003; Witzel et al., 2004; Dumont et al.,
2005; Metzger et al., 2005; Richmond et al., 2005; Strait
et al., 2005) and to reconstruct the behaviors of extinct
organisms (Richmond and Qin, 1996; Fastnacht et al.,
2002; Preuschoft and Witzel, 2004; Rayfield, 2004, 2005).
Despite advances driven by the biomedical industry

(Teran et al., 2005), building three-dimensional finite
element models of complex biological structures remains
complicated and time consuming. In an effort to stream-
line the process, finite element analyses that include
muscle-induced forces have taken one of two different
modeling approaches. The first is to directly model
muscles using finite elements. Muscle is a kinematically,
geometrically, and materially complex tissue. The pri-
mary goal of these studies is to describe how muscles
change shape and produce work (Blemker and Delp,
2005; Blemker et al., 2005; Lemos et al., 2005). Modeling
studies that focus on muscles understandably place less
emphasis on developing complicated models of bone. The
second approach to including muscle force in FEAs has
been to model muscles indirectly by applying forces at
points in muscle attachment regions or tractions to
areas of muscle attachment on FE models of bone (Ray-
field, 2004; Dumont et al., 2005; Metzger et al., 2005;
Ross et al., 2005; Strait et al., 2005). This method is
favored by comparative and evolutionary biologists
whose interests lie in understanding the functional
implications of bone shape.
The goal of this study is to determine whether different

methods of applying muscle forces to a complex bone
model produce substantially similar results. If so, then
researchers can use the simplest (and least time-inten-
sive) technique with some degree of confidence. On the
other hand, very different results would indicate that the
decision to use a particular method of applying muscle
force should be considered carefully. In this study, we
compare results derived from four methods of applying
muscle forces to a detailed finite element model of a skull.
The first two methods are already used widely and are
based on ad hoc assignment of point loads or traction
loads for each muscle attachment area. We developed two
new methods of applying muscle forces that are based on
the underlying mechanics of how muscle fibers interact
with the underlying bone. Specifically, the methods
account for the fact that muscles wrap around the skull
surface and impose tangential and normal loads on it.

MATERIALS AND METHODS
Finite Element Model

We built a finite element model of the skull of a Ja-
maican fruit bat (Artibeus jamaicensis) by a multistep
process that required several different software applica-
tions. To begin, a series of 874 two-dimensional gray-
scale bitmap images of the skull were collected from an
alcohol-preserved specimen using high-resolution com-
puted tomography (micro-CT) scanner (Skyscan model
1172). Adjacent images were separated by 0.019 mm.
The stack of images was used to reconstruct a three-
dimensional digital representation of the skull surface in
the software package Amira 3.1.1 (Mercury Computer

Systems, Inc., Chelmsford, MA). The three-dimensional
Amira file was then exported in stereo-lithography (stl)
format and opened in the next software package we
used, Geomagic Studio9 (Geomagic, Inc, Research Trian-
gle Park, NC). Studio8 was used to ‘‘clean’’ the surface
representation. Cleaning the surface representation
involved resolving digital reconstruction errors and sim-
plifying or eliminating some of the skull’s anatomical,
nonstructural, features. Once the surface model was suf-
ficiently clean to form a water-tight volume, we again
exported it as a stereo-lithography file and imported it
into the FEA software, Strand7 (G1D Computing Pty
Ltd, Sydney, Australia). Strand7 was then used to auto-
matically generate a solid mesh of the skull composed of
four-noded linear tetrahedral elements. The final volu-
metric model contained 1,133,096 tetrahedral elements,
247,854 nodes and 743,553 active degrees of freedom.
We assigned material properties to the model using a

rationale outlined in a previous study (Dumont et al.,
2005). Briefly, we assigned average values of Young’s
modulus (E 5 2 3 1010 Pa) and Poisson’s ratio (v 5 0.3)
for mammalian bone (Erickson et al., 2002) to the skull
model. We further assumed that the bone of the skull
was homogeneous and isotropic. Constraints were
applied to the skull following methods introduced by
Strait et al. (2002) and subsequently used in several
analysis of mammalian masticatory mechanics (Dumont
et al., 2005; Ross et al., 2005; Strait et al., 2005). Briefly,
reaction forces at the temporomandibular joints (TMJs)
were modeled by constraining a single node in the cen-
ter of each TMJ against displacement. This created an
axis around which the skull rotated when muscle forces
were applied. This constraint is consistent with rigid
body mechanics perspective of the skull having an in-
stantaneous axis of rotation for a given gape. To prevent
this rigid body motion and induce elastic deformation
due to biting forces, a node at the tip of the upper right
first molar was constrained against displacement (i.e.,
displacements in the x-, y-, and z-planes were set equal
to 0). Note that these single-node constraints at the
TMJ joints and bite tooth will produce artificially high
strain and stress values in the near vicinity of these
locations. Yet, due to Saint Venant’s principle (Malvern,
1969) this effect is highly localized and will not influence
the global stress and strain state throughout the skull.
Based on studies of muscle activity in another large

bat and in primates (De Gueldre and De Vree, 1988;
Hylander et al., 2004), we assumed simultaneous, maxi-
mum, and bilateral activity of the temporalis, masseter,
and medial pterygoid muscles and applied muscle forces
to the skull in proportion to their relative physiological
cross-sectional areas (PCSA; temporalis 5 69%, mass-
eter 5 9%, and medial pterygoid 5 22%; unpublished
data from A. Herrel). Although this loading regimen is
unlikely to occur during routine chewing, it may approx-
imate loading conditions during hard-object feeding.
Moreover, variation in the relative contributions of dif-
ferent muscles to peak bite force has been shown to
have only a nominal effect on patterns of strain pre-
dicted in FE analyses (Ross et al., 2005).

Modeling Muscle Loads

There are two distinct ways to model muscle loading
on the skull: a direct ‘‘physical’’ approach and an indi-
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rect mechanics approach. In the direct approach, the
soft muscle tissue is included in the analysis model as a
separate meshed geometrical entity with the proper ani-
sotropic material properties specified. Unfortunately,
this approach greatly complicates the digital reconstruc-
tion process, as now the geometries defining both bone
material and the soft muscle tissue need to be extracted
from the CT scans. Furthermore, the fibers within each
muscle are complexly interwoven and exhibit complex
hyperelastic, anisotropic, and incompressible material
behavior (Johansson et al., 2000; Teran et al., 2003;
Zhou and Lu, 2005). Including these details in a highly
detailed geometrical skull model would add a level of
complexity that is beyond the scope of this study. More-
over, because our focus is on the response of the skull,
such detailed modeling of the muscles themselves may
not be necessary.
We advocate a much simpler indirect mechanics

approach in which the muscles are not included in the
model. Instead, we account for the effect of the muscles’
contractions by applying forces or tractions (forces per
unit area) to the skull in areas of muscle attachment
and in the direction of the muscle fibers toward points of
attachment on the lower jaw. We investigated the effects
of four different indirect muscle loading methods on the
stress and strain behavior of the skull due to bite forces.
Each muscle loading method corresponded to a different
level of abstraction. In each of our models, we loaded the
skull with all three paired muscle groups and treated
the problems as linear elastostatic analyses, assuming
that the muscle groups fire bilaterally and simultane-
ously; dynamic effects were neglected. The four different
models for indirect muscle loads are (1) an ad hoc point-
load model, (2) an ad hoc uniform traction load model,

(3) a tangential-traction load model, and (4) a tangen-
tial-plus-normal-traction load model.

Ad hoc Point-Load Model

In this model, we applied point loads to finite element
nodes at ad hoc locations in the muscle skull attachment
areas. Three point loads of equal magnitude were applied
at ad hoc locations in each muscle bundle attachment area
on the skull and directed toward the appropriate attach-
ment point on the lower jaw.

Ad hoc Uniform Traction Model

In this model, we applied uniform traction to the sur-
faces of finite elements that represent the muscle attach-
ment areas. The direction of the traction load is not nor-
mal to the surface of the element. Rather, the direction
of traction varied from element to element such that the
traction load is always directed toward the force focal
node of each muscle attachment group.

Tangential-Traction Model

This model sought to account for the mechanics of
muscle fibers wrapping around portions of the skull
(Figs. 1, 2). We assumed that individual muscle fibers
are uniformly distributed and uniformly ‘anchored’ to
the skull in regions of muscle attachment. This meant
that the traction applied to each element face was iden-
tical within each muscle attachment region. If the unit
outward normal for a surface finite element in the mus-
cle attachment region had a ‘‘clear line of sight’’ to the
lower-jaw attachment point, then we applied traction to
that element’s surface face in the direction to the force

Fig. 1. Simplified illustration of muscle wrapping around a bone.
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Fig. 2. A: Simplified model of a bone segment with a muscle wrapped around it. B: A free body dia-
gram of an isolated infinitesimal section of muscle spanning an angle dy showing normal and tangential
tractions exerted upon it by the underlying skull.



focal node that defines the attachment point on the
lower jaw. However, when the face of the finite element
did not have a direct line of sight to the point of muscle
attachment on the lower jaw, then muscle fibers were
assumed to wrap across the element face. The anchoring
of muscle fibers to the skull in this ‘‘wrapped region’’
results in a tangentially directed traction in the fiber
bundle direction. The total tangential force applied to an
element is simply the tangential traction exerted by the
anchored fibers times the area of that element’s face.
The direction of the tangential traction varies from ele-
ment to element and was computed by vector mathemat-
ics. The value of uniform traction applied to each muscle
attachment region was based on the total muscle force
for the muscle group divided by the surface area of the
attachment region.

Tangential-Plus-Normal-Traction Model

The tangential-traction model differs significantly
from the point and distributed load models. However, it
still neglects the normal traction (i.e., pressure) that
muscle fibers impose on the skull as they wrap around
it. Many fibers that are anchored elsewhere may pass
over any given segment of the skull. In addition to exert-
ing a tangential traction, fibers that wrap across the
surface must also exert a traction normal to skull or, in
our finite element model, normal to the surface face of a
wrapped element. We used a physics-based approach to
derive a formula for this normal traction. Let ~r be a
position vector that locates the centroid of the surface
face of a wrapped element. A nonuniform normal trac-
tion, snð~rÞ, was applied on surface faces of all wrapped
elements in each muscle attachment region given by the
formula:

tnð~rÞ ¼
sð~rÞ
Rð~rÞ

! "
tt ð1Þ

where tt is the uniform tangential traction applied to
the muscle attachment region, sð~rÞ is the path length
from the far end of the muscle attachment region to the
current element surface, and Rð~rÞ is the instantaneous
radius of curvature of the muscle fiber in the direction
of the muscle fiber. This formula is derived in the appen-
dix based on fundamental principles of equilibrium.
We assumed that the radius of the curvature of the

wrapped muscle is identical to the skull’s radius of cur-
vature, except in the vicinity of the near end of the mus-
cle attachment region where the muscle begins to sepa-
rate from the skull. Various methods can be used to esti-
mate the principal radii of curvature of a polygonal
surface (i.e., the surface faces of tetrahedral elements in
the muscle attachment regions) (Razdan and Bae, 2005).
We used data from adjacent elements and vector mathe-
matics to generate a reasonable approximation of the
skull radius of curvature in the direction of the tangen-
tial traction for each surface face of the finite elements
in the region of muscle attachment.
A much more tedious calculation to perform is deter-

mining the path length sð~rÞ. Recall that sð~rÞ is the path
length in the direction of the muscle fiber bundle along
the surface of the skull, beginning from the far end of
the muscle attachment region to the centroid of the cur-

rent surface face location in the muscle attachment
region, donated by ~r. The surface of the skull was
approximated by a piecewise triangulation which com-
prised the surface faces of the tetrahedral mesh. To com-
pute the surface path length for each muscle-wrapped
tetrahedral element, we defined an infinite plane given
by the unit normal vector to the surface face of the cur-
rent tetrahedral element and the focal point of the mus-
cle group. The intersection of this plane with the trian-
gulation of the surface skull contains the path from the
far end of the muscle attachment area to the current ele-
ment. An algorithm with the necessary logic and vector
mathematics was developed to compute this path length
for the surface face of each wrapped element of each
muscle group.
Because the surface faces of thousands of finite ele-

ments model the various muscle attachment regions, an
automated procedure is needed to apply tractions that
vary in direction and magnitude element by element.
For this purpose a Microsoft Visual Basic program,
called BoneLoad (the BoneLoad executable code may be
downloaded for free at www.biomesh.org) was created to
facilitate the implementation of these muscle loading
models with a commercial FEA tool. BoneLoad allows
the user to automatically assign ad hoc uniform traction
loads forces, tangential-traction loads, or a combination
of tangential-plus-normal-traction loads to the free sur-
faces of tetrahedrals located in the muscle attachment
regions of the skull. The program exploits the Applica-
tion Programming Interface (API) of the Strand7 finite
element code to read the necessary mesh information of
the model, performs the necessary calculations to deter-
mine traction values and directions for surface faces of
every element in every muscle attachment region, and
writes these tractions directly to the finite element mod-
el’s binary database file. Figure 3 presents an example
of the tangential and normal loads applied by the Bone-
Load program.
To make comparisons among the four muscle loading

models, we adjusted the overall magnitude of muscle
forces applied to each model until a reaction force of
22.5N was generated perpendicular to the palate at the
constrained node on the upper right molar (Dumont
et al., 2005). This requires two separate FEAs. Each
muscle group is assumed to apply a muscle force propor-
tional to its PCSA value. Thus, in the first analysis
we let

Fi ¼
PCSAi

Pm

i¼1
PCSAi

0

BB@

1

CCAFinitial ð2Þ

where Fi is the amount of muscle force applied to muscle
group i, PCSAi is the PCSA value for muscle group i, m
total number of muscle groups, and Finitial is an arbi-
trary force value. The solution of this analysis gives a
reaction force value R in the measured bite force direc-
tion at the constrained tooth node corresponding to the
bite point that is directly proportional to Finitial. In the
second analysis, all muscle group forces are then scaled
by the ratio of Ractual/R, where Ractual is the average
bite force measured in the field using a portable force
transducer of Artibeus jamaicensis during voluntary
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Fig. 3. A,B: Tangential (A) and normal (B) loads distributed over the attachment region of the right
temporalis muscle using the BoneLoad program. Arrowheads indicate distribution and directions of trac-
tions; magnitudes are not shown.
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unilateral molar biting (Aguirre et al., 2002; Dumont
and Herrel, 2003):

Fi ¼
PCSAi

Pm

i¼1
PCSAi

0

BB@

1

CCA
Ractual

R

! "
Finitial ð3Þ

Because the reaction force R obtained in the first analy-
sis is directly proportional to Finitial, the result of the
second analysis is a reaction force value at the bite tooth
node exactly equal to Ractual—the experimentally meas-
ured value—irrespective of the Finitial value. This strat-
egy allowed us to compare the absolute magnitudes of
the muscle forces required to generate a realistic bite
force as well as the effect of those forces on the distribu-
tion and magnitude of stress in the finite element model.
Each of the four muscle loading models was solved using
the linear static solver provided in Strand7 (GD Com-
puting Pty Ltd., Sydney, Australia).

RESULTS
Model Comparison Based on Static Analysis

Before comparing strain and stress analysis results
based on the four different loading scenarios, it is impor-
tant to note any differences between the loading scenar-
ios from a system-level perspective. To this end, we
developed several system-level metrics related to the
forces applied to the model by the four muscle modeling
methods (Table 1). These metrics include total muscle
force applied to the skull for each muscle group, the

degree in which this force vector is aligned toward the
muscle group force focal node, the moment about the left
and right TMJ and the TMJ axis exerted by each muscle
group, and two muscle loading efficiency metrics as
defined below.
First, from each analysis we extracted data summariz-

ing the magnitudes of total muscle forces that were
applied to the models to generate 22.5 N of bite force at
the constrained molar and in the same direction for
which we had obtained bite force data through in vivo
measurement. Values of these force magnitudes for each
muscle group, averaged across the left and right, are
shown in the first three rows of Table 1. The force mag-
nitude for each muscle attachment region is the magni-
tude of the vector sum of all the applied forces to the
attachment region. Note that, in all the models, the rela-
tive magnitude of forces across muscle groups closely
matched the desired 69% temporalis, 9% masseter, and
22% pterygoid force ratios.
Data presented in Table 1 illustrate that the tangen-

tial traction model required the least amount of applied
muscle loads, as measured by Ftotal, to achieve the same
bite reaction force. The tangential-plus-normal-traction
model required approximately 10% more applied muscle
force, and the two ad hoc models required approximately
25–27% more applied muscle forces to generate the
same unilateral molar bite reaction force. We defined

Zload $ 100 1% Ftotal %minðFtotalÞ
minðFtotalÞ

! "
ð4Þ

as the relative efficiency of the applied muscle forces for
a given modeling method, where Ftotal is the total applied

TABLE 1. Comparative static analysis metrics for the four muscle loading models. All models were loaded to
generate a 22.5 N reaction force in the direction of bite force direction at the constrained node on the right

upper first molar

Item Units ad hoc point load

Muscle loading models

Tangential normal tractionad hoc traction Tangential traction

Ftemporalis
1 (% of Ftotal) N (%) 24.5 (68.5) 25.2 (68.6) 19.8 (68.4) 21.9 (68.6)

Fmasseter
2 (% of Ftotal) N (%) 2.86 (8.00) 2.96 (8.10) 2.36 (8.20) 2.61 (8.20)

Fpterygoid
3 (% of Ftotal) N (%) 8.39 (23.5) 8.56 (23.3) 6.79 (23.5) 7.43 (23.3)

Ftotal
4 N 035.8 036.72 0029.0 031.9

hload
5 % 076.6 73.4 100 90

ytemporalis
6 deg 0003.55 0001.78 0023.19 0002.45

ymasseter
7 deg 0003.69 0003.15 0009.06 0002.95

ypterygoid
8 deg 0000.93 0000.98 0001.11 0001.84

MLTMJ
9 N mm 332.2 323.9 247.9 299.8

MRTMJ
10 N mm 339.8 333.3 257.3 292.9

MTMJA
11 N mm 231.3 214.5 209.5 200.1

hmoment
12 % 068.9 065.3 83.0 067.5

1Ftemporalis is the average value of the magnitudes of the total left and right temporalis muscle forces.
2Fmasseter is the average value of the magnitudes of the total left and right masseter muscle forces.
3Fpterygoid is the average value of the magnitudes of the total left and right pterygoid muscle forces.
4Ftotal 5 Ftemporalis 1 Fmasseter 1 Fpterygoid.
5hload is the relative muscle load efficiency as defined in Equation (4).
6ytemporalis is the angle between temporalis muscle force vector and vector from muscle area centroid to muscle.
7ymasseter is the angle between masseter muscle force vector and vector from muscle area centroid to muscle focal.
8ypterygoid is the angle between pterygoid muscle force vector and vector from muscle area centroid to muscle focal.
9MLTMJ is the magnitude of the moment exerted by all the muscle forces about the left TMJ.
10MRTMJ is the magnitude of the moment exerted by all the muscle forces about the right TMJ.
11MTMJA is the magnitude of the moment due to all applied muscle forces about the TMJ axis.
12hmoment is the moment efficiency of the applied muscle loads as defined by Equation (5).
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muscle forces for a given muscle modeling method, and
min(Ftotal) is the minimum total applied muscle force
magnitudes among all the modeling methods.
Also shown in Table 1 are degrees of muscle force

alignment, moments of the total force vector applied for
each muscle group about the left and right TMJs, the
moment of each total force vector applied for each mus-
cle group about the TMJ axis, and the efficiency of the
muscle forces about the TMJ axis. For all of these met-
rics, we assumed that the total force applied to the skull
for each muscle group, which is either due a collection of
point loads or due to a set of traction loads (i.e., surface
loads per unit area), acts at the geometric centroid of
the skull’s muscle attachment region. The degree of
alignment is defined as the angle between the total mus-
cle force vector for each muscle attachment region and
the vector from the geometric centroid of the region to
the force focal node of that region. With the exception of
the tangential-traction-only model, the total applied
force vector to the region was well aligned toward the
region’s force focal node. In the tangential-traction-only
model, tangential tractions applied to the regions of
muscle attachment were misaligned up to 23.19 degrees
for the temporalis muscle group.
The magnitudes of moments exerted by the applied

loads about the left and right TMJs indicate that excel-
lent bilateral load symmetry was achieved for all models
(Table 1). Considering that the sizes, shapes, and loca-
tions of muscle attachment regions and the force focal
node locations were all identified visually, the bilateral
agreement of exerted moments about the TMJs is quite
good.
Moment results also indicate that applied muscle

loads for the point load and ad hoc traction models
exerted very comparable moment magnitudes about the
left and right TMJs, and that these moment magnitudes
were larger than the moment magnitudes produced by
the tangential-traction and the tangential-plus-normal-
traction models. Recall that a moment is a vector with a
magnitude and direction. The moment about the axis
defined by the TMJs, found in the penultimate row of
Table 1, is the component of this vector along the direc-
tion of the joint axis. This is the portion of the total
moment due to all the applied muscle loads that pro-
duces pure rotation about the TMJ axis. We defined
hmoment as the moment efficiency of the applied muscle
loads and calculated it as the percentage of total applied
moment due to the muscle forces that results in a pure
rotational moment about the TMJ axis:

Zmoment ¼ 100
Mmja

1
2 ðMlmj þMrmjÞ

 !

ð5Þ

The tangential-traction muscle loading model has the
highest muscle moment loading efficiency with a value
of 83% compared with 65–69% values for the other mod-
els. Furthermore, the tangential-traction model required
the least amount of applied magnitude of muscle loads
to achieve the same bite reaction force. As expected, the
loading method that lacked a component of force normal
to the skull resulted in an improved ability to generate
bite force. Especially for the temporalis muscle group,
where normal forces exerted on the skull do not produce
significant rotation about the TMJ axis. However, the

tangential-plus-normal-traction model required only
approximately 10% more muscle loading force to achieve
the same bite reaction force; the two ad hoc models
required approximately 25% more muscle loading force.
Finally, there is approximately 15% of difference in the
magnitudes of the moments exerted about the TMJ axis
due to muscle loading in the four models. The ad hoc
point-load model resulted in the highest moment about
the TMJ axis, and the tangential-plus-normal-traction
model resulted in the lowest. Thus, while the muscle
moment loading efficiency metric defined in Equation (5)
is correlated in some sense with the effectiveness of the
applied muscle loads, the unilateral molar bite force is
not simply due to a rotational moment exerted about the
TMJ axis by the applied muscle forces. Due to the com-
plex geometry of the skull, a more complicated type of
mechanical load transfer must be occurring.

Model Comparison Based on Stress State

The stress states of the four models were compared
both qualitatively and quantitatively. For qualitative
comparisons, we compared the stress states of the mod-
els visually by examining the distribution of the stress
tensor field throughout the skull (Figs. 4–7). Except in
the vicinity of the point loads in the ad hoc point-load
model, all of the models exhibit overall similarity in von
Mises stress distributions. However, some differences do
exist. For example, the tangential-traction and tangen-
tial-plus-normal-traction models produced larger regions
of high von Mises stress values within the working-side
infratemporal fossa compared with the other two models
(Fig. 4). Conversely, the ad hoc point-load model and the
ad hoc tangential model resulted in higher stresses
along the zygomatic arches (Figs. 4, 5) and the posterior
cranial base (Fig. 6). This finding suggests that a greater
portion of the applied muscle forces for the two ad hoc
models is transmitted to the three constrained nodes
(i.e., the bite point and the centers of the TMJs) through
the posterior–ventral part of the skull. Such a circuitous
force transmission path is inconsistent with an optimal
design of a structure with a minimum weight to
strength ratio. Indeed, forces transmitted by internal
stresses from the dorsal portion of the skull to the poste-
rior-ventral part of the skull have little ability to affect
bite force. The constrained nodes defining the center of
the TMJs would absorb virtually all of the force offered
by this force path by means of increased reaction forces.
This is because the constrained nodes at the TMJ are
located proximal to the bite point along this circuitous
load path, and the very thin nature of this mammalian
skull severely limits its ability to transmit loads by
transverse shear. With the exception of the ad hoc point
load model, there were only minor differences in stress
distributions and magnitudes on the dorsal surface of
the skull (Fig. 7).
For quantitative comparisons, we selected six identical

locations in the four models and compared the results in
terms of von Mises stress (Fig. 8). These locations corre-
spond to the centroids of six specific tetrahedral ele-
ments that were examined in each model. We chose to
report von Mises stress because recent research indi-
cates that cortical bone failure is strain-controlled,
which is indicative of ductile fracture (Nalla et al.,
2003). The most widely used failure theory for predicting
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Fig. 4. Left lateral view of the distribution of von Mises stress under the four muscle models. A–D:
The models are ad hoc point-load (A), ad hoc traction load (B), tangential-traction (C), and tangential-
plus-normal-traction (D).



Fig. 5. Right lateral view of the distribution of von Mises stress under the four muscle models. A–D:
The models are ad hoc point-load (A), ad hoc traction load (B), tangential-traction (C), and tangential-
plus-normal-traction (D).



Fig. 6. Dorsal view of the distribution of von Mises stress under the four muscle models. A–D:
The models are ad hoc point-load (A), ad hoc traction load (B), tangential-traction (C), and tangential-
plus-normal-traction (D).



Fig. 7. Ventral view of the distribution of von Mises stress under the four muscle models. A–D:
The models are ad hoc point-load (A), ad hoc traction load (B), tangential-traction (C), and tangential-
plus-normal-traction (D).



Fig. 8. The six locations selected for quantitative stress item comparisons. Locations are (1) the
basioccipital, (2) the palate, (3) the infratemporal fossa, (4) the medial surface of the orbit, (5) the superior
surface of the rostrum, and (6) the nasal septum.



ductile failure is the von Mises Failure Criterion, also
known as the Maximum Distortional Energy Theorem
(Juvinall and Marshek, 1991). Note that the square of
the von Mises stress is directly proportional to the dis-
tortion strain energy per unit volume. However, we
excluded from consideration portions of these regions
with artificially high stresses due to modeling idealiza-
tions, such as point constraints and point loads. In terms
of the principal stresses, von Mises stress is given by

svm ¼ 1

2

h
ðs11 % s22Þ2 þ ðs22 % s33Þ2 þ ðs11 % s33Þ2

i# $1=2

ð6Þ

Apart from a constant, von Mises stress is identical to
the octahedral shear stress that exists on a plane
equally inclined to three principal stress directions
(Cook and Young, 1985). For this reason, von Mises
stress is the criterion used to predict failure of ductile
materials due to distortion or shear. Note that, because
the skull is modeled as a single isotropic homogeneous
material, exactly identical comparative results would be
obtained by comparing the strain states.
Table 2 presents the principal stresses (r11, r22, and

r33) and the equivalent or von Mises stress (rvm), at
these six locations for the four different muscle loading
models. Note that because the centroid of a surface tet-
rahedral element is located interior to the surface, the
stress state values shown in Table 2 correspond to inte-
rior stress values. However, because the linear tetrahe-
dral element admits only a constant stress state
throughout the element volume, these centroidal stress
values can be interpreted as occurring on the surface
faces of the tetrahedral elements. In the absence of dis-

cretization error, one of the principal stress components
must be identically zero on an unloaded or free surface.
For each of the six locations for comparison, at least one
of the principal stress components is small—but not
zero—compared with the other principal stress compo-
nents. This finding reflects a small amount of discretiza-
tion error common to all models.
Table 2 reveals many interesting quantitative differen-

ces at various locations in the skull. In the nasal septum
and palate, there was reasonably good agreement in the
stress state for all models except for the point-load model,
which under-predicted stresses compared with the other
models. The maximum principal stress (r11) and von Mises
stress (rvm) were under-predicted by as much as 40% com-
pared with the tangential-plus-normal model. Qualitative
agreement does exist in the sense that all models are pre-
dicting essentially a uni-axial tensile stress state at these
points, evidenced by the dominant magnitude of the maxi-
mum principal stress, r11, compared with the other two
principal stress components, r22 and r33.
At locations within the inferolateral and superolateral

aspects of the rostrum, there was good agreement in all the
models for the complete state of stress. Furthermore, apart
from stress concentrations due to point loads and point con-
straints, these rostrum locations exhibited the highest mag-
nitude of von Mises stress in the skull—approximately 35
MPa compared with stress values of 21–28 MPa for the
intratemporal fossa location (point E). All models predicted
a state of uni-axial compression on the inferolateral aspect
of the rostrum, as evidenced by the dominant negative value
of r33 compared with the values of r11 and r22.
Finally, the qualitative observation that the ad hoc

models yielded much higher stress values on the poste-
rior cranial base than did the mechanics-based models is
borne out by the quantitative results (Table 2). Predicted

TABLE 2. Comparison of r11, r22, r33, and rvm for the four models at six locations. See Figure 8
for sample locations

Location Strain

Stresses for muscle loading models (MPa)

ad hoc point load ad hoc traction Tangential traction Tang. 1 normal traction

Nasal septum r11 13.57 16.97 17.98 17.87
r22 0.33 .041 0.45 0.44
r33 20.53 20.70 20.78 20.76
rvm 13.69 17.14 18.18 18.06

Palate r11 5.57 9.85 9.75 9.0
r22 0.49 1.07 1.12 1.04
r33 0.27 0.41 0.40 0.42
rvm 5.19 9.13 9.01 8.29

Orbit r11 2.72 3.15 3.25 3.20
r22 0.64 0.51 0.58 0.56
r33 233.60 232.95 233.91 233.69
rvm 35.32 34.86 35.90 35.65

Rostrum r11 6.36 5.97 6.40 6.35
r22 20.06 20.10 20.03 20.09
r33 216.64 216.75 217.83 217.18
rvm 20.56 20.37 21.74 21.06

Infratemporal fossa r11 24.37 25.61 32.68 28.38
r22 5.14 5.46 6.67 6.02
r33 1.42 1.54 1.56 1.32
rvm 21.34 23.26 28.91 25.04

Basioccipital r11 18.43 16.45 2.30 3.55
r22 2.67 2.40 0.34 0.51
r33 2.21 1.97 0.23 0.40
rvm 15.99 14.28 2.02 3.09
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von Mises stress for the ad hoc models differed from the
two mechanics-based loading models by as much as a
factor of eight. Indeed, the ad hoc models predicted von
Mises stress values on the basioccipital comparable to
those predicted in the nasal septum, whereas the tan-
gential model and tangential-plus-normal model pre-
dicted stresses five to eight times smaller at the basiocci-
pital compared with the nasal septum.

DISCUSSION AND CONCLUSIONS

Ideally, these four methods of modeling indirect mus-
cle forces would be validated against in vivo strain gage
measurements. Unfortunately, this is not practical for
this (and most) bats because their small size imposes
significant obstacles to implanting strain gages in most
regions of interest (e.g., palate, cranial base, and infra-
temporal fossa). That said, we believe that a mechanics-
based approach to modeling and applying muscle loads
will yield a more reliable, repeatable, and accurate load-
ing mechanism than ad hoc muscle modeling methods.
Whether or not the reliability and accuracy obtained by
the simple-point load modeling methods or the ad hoc
traction load modeling models are sufficient depends on
the analysis objectives and locations in the skull for
which stress values are sought. In the rostrum itself, we
found little quantitative difference in terms of the maxi-
mum von Mises stress predicted by the various modeling
methods, although we did observe that the mechanics-
based muscle modeling models predicted larger regions
of high von Mises stress compared with the ad hoc mod-
els. In other locations, such as the nasal septum, the
palate, and the basioccipital, substantial quantitative
differences were found in both the size of the stressed
region and the maximum stress values.
Certainly, if only a qualitative understanding of the

stress and strain distribution in the skull is needed,
then either an ad hoc point load or ad hoc traction mus-
cle modeling method provide results that are similar to
those derived from mechanics-based muscle loading
models, especially in terms of the most highly stressed
regions of the skull. For example, the ad hoc models pre-
dict a state of uni-axial tension in the nasal septum and
palate and a state of uni-axial compression on the supe-
rior surface of the rostrum. These states of stress are
also predicted by both of the muscle-wrapping mechanics
models. Locations of maximum principal stresses and
maximum von Mises stresses are virtually the same
between all the models once artificial stress concentra-
tions due to point loads and constraints are discounted.
We note that the tangential-traction model and

tangential-plus-normal-traction model are in close quanti-
tative agreement with each other in terms of states of
stress, except at the infratemporal fossa location where
the tangential-traction model predicted a von Mises stress
approximately 15% higher than predicted by the tangen-
tial-plus-normal-traction. This result occurred despite
that approximately 9.4% less total muscle force was
applied in the tangential-traction model compared with
the tangential-plus-normal-traction model (see Table 1).
One thing is quite clear from our comparative analysis

results. Due to the geometric complexity of the skull, it
is extremely difficult to know a priori whether or not an
ad hoc muscle modeling method will yield sufficiently
accurate results in regions of interest. In the case of this

analysis, both the ad hoc point load and ad hoc uniform
traction method result in larger percentages of the
applied load being transmitted around the posterior
region of the skull and then anteriorly through the cra-
nial base to eventually by absorbed by the kinematically
constrained TMJ nodes. This force path results in in-
creased reaction forces at the TMJ nodes, a relatively
high uni-axial state of tension in the basioccipital region,
and an increase in total applied muscle loads to yield
the same bite point reaction force compared with the
mechanics-based muscle modeling methods.
Ross et al. (2005) used FEA, in vivo data, and princi-

pal coordinate analysis to demonstrate that the relative
recruitment of masticatory muscles and the latency
between muscle activity and maximum bite force can
result in substantial variation in maximum shear strain
at specific locations on the skull of Macaca mulatta.
They found that predicted maximum strain varied by a
factor of four on the working-side zygomatic arch, while
strain at sites in the dorsal interorbital and orbital
regions was relatively invariant. Similarly, our results
suggest that different masticatory muscle modeling
methods can have a substantial quantitative impact on
the predicted von Mises stresses at specific locations on
the skull. In our modeling experiments, we found rela-
tively low levels of variation except in the basicranium,
where the ad hoc point load model predicted between
five and eight times more von Mises stress than the two
mechanics based models.
By modifying the BoneLoad program to include the

capability to read and write finite element data contained
in an ASCII (text-based) file structure, the tangential-
and tangential-plus-normal-traction modeling approaches
could be tested on finite element models developed by
other biologists using different commercial FEA pro-
grams. This would enable the accuracy of the various
modeling approaches presented herein to be assessed on
organisms for which in vivo strain data has been or can be
obtained. While almost every FEA program has its own
unique ASCII file data structure, many tools support, for
example, the NASTRAN *.dat file format. To obtain im-
portant validation of our mechanics-based muscle model-
ing approach, we are currently extending BoneLoad to
support this ASCII file structure for FEA model data.
This would also enable biologists to quickly and efficiently
apply muscle-induced forces consistent with mechanic
principles to finite element models in lieu of application of
ad hoc muscle forces.
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APPENDIX

MUSCLE WRAPPING MECHANICS FOR
CYLINDRICAL GEOMETRY

In this appendix, we derive formulas for tangential and
normal tractions exerted by muscle bundles when they are
wrapped around bone structures. Consider a small infinites-
imal section of a muscle bundle that is wrapped around a
corresponding infinitesimal section of the skull, as shown in
Figure 2B. This section spans an infinitesimal angle dy and
has a finite radius of curvature R(y). Note that, although
the illustration of Figure 2B indicates that the radius of cur-
vature of the muscle bundle is constant in the wrapped
region, in reality it varies considerably in different regions
due to variations in the skull’s radius of curvature. Our cal-
culations of tangential and normal tractions use vector
mathematics to calculate element-by-element variation in
radius of curvature in the direction of the muscle fiber.
The free body diagram of the wrapped muscle section

(Figure 2B) illustrates that the anchoring of individual
muscle fibers over this small section results in a small
change in tension in the muscle bundle, i.e., the bundle has
more fibers and hence carries more tensile load at the right
edge of the muscle section (T1dT) than at the left edge (T).
The anchoring of muscle fibers to the skull results in a tan-
gential traction exerted on the bone. An equal and opposite
tangential traction, st, is exerted on the muscle fiber as
shown. Finally, due the wrapping of this muscle bundle, a
normal traction must be exerted by the muscle on the skull,
resulting in the equal and opposite normal traction, sn,
exerted on the muscle bundle as shown.
Now, we simply apply Newton’s Law of Statics, requir-

ing that this small muscle section remain in static equi-
librium, using the normal-tangential coordinate system
shown. Recall that the tension T carried in the muscle
bundle has been defined as a force per unit depth. Then,
the sum of the forces in the tangential direction yields

ðTðyÞ þ dTÞcosðdy=2Þ % TðyÞcosðdy=2Þ % ttRðyÞdy ¼ 0

dT ¼ ttRðyÞdy ðA:1Þ

where the small angle approximation of cos(dW/2) ' 1
has been used. Integration of Equation (A.1) yields

TðyÞ ¼
Z TðyÞ

0
dT ¼

Z y

0
ttRðyÞd# ¼ tt

Z y

0
RðyÞd# ¼ ttsðyÞ

ðA:2Þ
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where s(y) is the path length from the far edge of the mus-
cle attachment region to the location defined by the angle
y. Now we sum forces in the normal direction for the infin-
itesimal section of muscle shown in Figure 2B to yield

%ðTðyÞ þ dTÞ sinðdy=2Þ % TðyÞ sinðdy=2Þ
þ tnRðyÞdy ¼ 0 ¼)TðyÞ ¼ tnRðyÞ ðA:3Þ

where for small angles the approximation sin(dy/2) ' dy/
2 has been used and the term involving dT dy is
neglected as a higher order term. Substituting for T(y)
from Equation (A.2) yields

tnðyÞ ¼
sðyÞ
RðyÞ

! "
tt ðA:4Þ

Equation (A.4) was derived using the angle y to define a
location on a path in a two-dimensional space. This
result can be directly extended to a general surface
existing in a three-dimensional space by defining ~r as a
position vector to a point on a surface in a three-dimen-
sional space. Thus, in general,

tnð~rÞ ¼
sð~rÞ
Rð~rÞ

! "
tt ðA:5Þ

where sð~rÞ is the path length from the far end of the
muscle attachment region to the current location on the
surface (i.e., to the centroid of the current element face
located by the position vector ~r) and Rð~rÞ is the radius of
curvature of the muscle fiber in the direction of the mus-
cle fiber at this location.
A simple example illustrating muscle wrapping mechan-

ics for simplified geometry is presented that validates our
derived expressions for normal and tangential tractions
due to muscle wrapping. Consider a muscle bundle
wrapped 90 degrees around cylinder of radius R as shown
in Figure A1 below. For simplicity, we assume the cylinder
and muscle is of unit depth, where depth is the dimension
into the plane of the figure. As before, the tension T of the
bundle represents the total muscle bundle force per unit
depth. We also assume that the individual fibers are anch-
ored uniformly around the wrapped portion of the cylinder.
In a more general case, the muscle fibers are anchored in

Fig. A1. Example of muscle bundle wrapped and anchored to a
cylindrically shaped skull.

wrapped and unwrapped regions of the underlying bone
and the fibers may not be anchored uniformly to the skull.
At point B (x 5 0, y 5 R) in the figure, the muscle bundle
carries its full tensile force T. The vector ~T at point B is
directed to the appropriate muscle insertion point (such
as on the lower jaw if this is a skull structure). In reality,
these are regions of attachments that are idealized as
points that we call force focal nodes. At point A (x 5 R, y 5
0), designated as the ‘‘far’’ end of the muscle wrapped
region, there is zero amount of tensile force left in the
bundle. This cylindrically shaped skull has constant ra-
dius of curvature R, but in general, the curvature of a
mammalian skull in the direction of the muscle bundle, as
well as other bone structures, varies spatially.
Now consider a small infinitesimal muscle-bundle seg-

ment of length R(W)dW located a circumferential path
length s(W) from point A as illustrated in the figure. The
uniform anchoring of muscle fibers results in a uniform
tangential or shear traction st exerted on the muscle fiber
by the anchoring substrate (i.e., bone) as shown (acting in
the 2t̂ direction of the local n̂ 2 t̂ coordinate system. In
mechanics, a traction load is a force per unit area. The
uniform anchoring of muscle fibers requires that

tt ¼
T

smax
ðA:6Þ

where smax is the path length of wrapped muscle from the
far edge of the muscle wrapped region (point A) to the near
edge of the muscle wrapped region (point B). Note that for
the more general case, smax would be the path length of the
entire wrapped and unwrapped muscle anchoring region.
For this simple cylindrical geometry, one has

smax ¼
Z#¼#max

#¼0

Rð#Þd# ¼ R#max where #max ¼
p
2

ðA:7Þ

Thus, for this example the tangential traction is given by

tt ¼
T

Rðp=2Þ
¼ 2T

pR
ðA:8Þ

Now we apply Equation (A.4) to compute the normal trac-
tion for this simplified geometry:

tnð#Þ ¼
sð#Þ
RðyÞ

! "
tt ¼

Ra¼y

a¼0

RðaÞda

Rð#Þ

0

BBB@

1

CCCAtt ðA:9Þ

tnðyÞ ¼
Z#

#¼0

da

0

@

1

Att ¼ #tt ðA:10Þ

To validate this result, we will compute the total force
exerted on the wrapped muscle by the normal and tan-
gential tractions. Theoretically, the total force exerted on
the muscle bundle by the skull must be equal and oppo-
site to the pulling force T acting on the muscle bundle at
point B. We resolve components of normal and tangen-
tial traction into x and y components of forces. This
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Fig. A2. Force centroid concept.

requires first multiplying the tractions that act over the
muscle segment by the area of contact of the infinitesi-
mal muscle section to get force components:

dFn ¼ tnRð#Þd# ¼ ttR#d#
dFt ¼ ttRd#

ðA:11Þ

Then, using simple trigonometry, we resolve these com-
ponents into x and y components:

dFx ¼ dFn cosð#Þ þ dFt sinð#Þ ¼ ttRð# cosð#Þ þ sinð#ÞÞd#
dFy ¼ dFn sinð#Þ % dFt cosð#Þ ¼ ttRð# sinð#Þ % cosð#ÞÞd#

ðA:12Þ

Now we integrate over the wrapped muscle section to
get the total x and y force components acting on the
wrapped muscle bundle due to the constant tangential
traction and the varying normal traction:

Fx ¼
Zymax

0

ttRð# cosð#Þ þ sinð#ÞÞd#

¼ ttR
Zymax

0

ð# cosð#Þ þ sinð#ÞÞd#Fy

Fy ¼
Zymax

0

ttRð# sinð#Þ % cosð#ÞÞd#

¼ ttR
Zymax

0

ð# sinð#Þ % cosð#ÞÞd#

The integrations can be found in any standard mathe-
matical handbook:

Zumax

0

ð# cosð#Þ þ sinð#ÞÞd# ¼ ½u sinðuÞ)umax
0 ¼ umax sinðumaxÞ

Zumax

0

ð# sinð#Þ % cosð#ÞÞd# ¼ ½%u cosðuÞ)umax
0 ¼ %umax cosðumaxÞ

Substituting this result into Equation (A.13) yields

Fx ¼ ttR ymax sinðymaxÞ
Fy ¼ %ttR ymax cosðymaxÞ

ðA:14Þ

For this example scenario in which ymax p/2 we find that

Fx ¼
ttRp
2

Fy ¼ 0
ðA:15Þ

Substituting for tangential traction tt using Equation (A.8)
yields

Fx ¼
2T

pR

! "
Rp
2

¼ T ðA:16Þ

The result of Equations (A.15) and (A.16) validates, in
part, the expressions for the normal and tangential trac-
tions that act on the muscle fiber, as integration results
in a total force vector exactly equal and opposite to the
tensile force T, which acts on the muscle bundle in the
2x direction. However, we must still prove that the effec-

ðA:13Þ
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tive location of the total force is consistent with static
equilibrium principles. This effective location for the
total force due to the applied normal and tangential
tractions is called the force centroid. The force centroid
is the location in which in terms of static equilibrium of
the entire system, the set of all applied loads (point
loads, tractions, etc.) can be replaced by a single-force
vector. This concept is illustrated in Figure A2 below.
The integrations in Equation (A.13) yield the x and y

components of ~Fc that are force equivalent from a sys-
tem static equilibrium perspective to the applied normal
and tangentially tractions acting on the muscle bundle.
All that remains to be determined is the position vector
~roc that locates the point c, the force centroid, such that
‘‘moment’’ equivalency exists. The moment about a point
O due a force vector acting at another point C is given
by the vector cross product of ~roc (the position vector
from point O to point C) with the force vector ~Fc:

~MO ¼~roc * ~Fc ðA:17Þ

where here the multiplication sign indicates the vector
cross product. For static equilibrium equivalency, the
moment about any point (moment about a point is a vec-
tor that acts at this point; it has units of force-length,
such as N mm) due to the set of applied forces and trac-
tions must be identical to the moment about the same
point when the set of applied forces and tractions are
replaced by the force vector ~Fc acting at the force cent-
roid. Thus, for the example of Figure A1,

~roc * ~Fc ¼
Zp=2

0

~rðyÞ * d~FðyÞ ðA:18Þ

where~rðuÞ is the position vector from the coordinate sys-
tem origin to the small muscle segment and d~FðuÞ is

Fig. A3. Equivalent force systems based on system static equilibrium for the wrapped cylinder example
problem with normal traction sn(y) given by Equation (A.10) and tangential traction st given by Equation (A.6).

small (i.e. infinitesimal) force vector acting on the small
(i.e., infinitesimal) muscle segment due to the applied
normal and tangential tractions. Let ı̂ and ĵ denote unit
vectors acting in the x and y direction. The tangential
and normal tractions acting on the muscle segment are
multiplied by the area of the segment, that is, R(y)dy, to
yield infinitesimal force components acting in the tan-
gential and normal direction which are then resolved
into x and y components using basic trigonometry:

d~Ft ¼ ttRðyÞdy
%
sinðyÞ̂i% cosðyÞ̂j

&

d~Fn ¼ ttyRðyÞdy
%
sinðyÞ̂iþ cosðyÞ̂j

& ðA:19Þ

Thus

d~F ¼ d~Ft þ d~Fn ¼ ttRðyÞfðy cosðyÞ þ sinðyÞ
&̂
i

þ ðy sinðyÞ % cosðyÞ
&̂
jgdy ðA:20Þ

The position vector ~rðuÞ in terms of x and y components
is

~rðyÞ ¼ RðyÞ
%
cosðyÞ̂iþ sinðyÞ̂j

&
ðA:21Þ

For this illustrative problem in which all the forces lie in
the x–y plane, the cross product results in a vector in
the out of plane direction (i.e., in the z direction or
unit vector k̂ that acts in the z direction). Applying
Equation (A.18) yields

ðrocxFcy % rocyFcxÞk̂ ¼
Zp=2

0

'
RðyÞ

%
cosðyÞ̂iþ sinðyÞ̂j

&

* ttRðyÞfðy cosðyÞ þ sinðyÞÞ̂iþ
%
y sinðyÞ % cosðyÞ

&̂
jg
(
dy

ðA:22Þ
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Equation (A.15) gives the components of ~Fc: Fcx 5 stR(p/
2), Fcy 5 0. Thus,

% rocyRstðp=2Þk̂ ¼ R2st

Zp=2

0

½u cosðuÞ sinðuÞ % cos2ðuÞ

% u cosðuÞ sinðuÞ % sin2ðuÞ)du k̂

Simplifying yields

% rocyRttðp=2Þk̂ ¼ %R2tt
Zp=2

0

dy k̂ ¼ %R2ttðp=2Þk̂ ðA:23Þ

Thus, rocy ¼ R and the x component of ~roc, rocx, is inde-
terminable because Fcy 5 0. This means that the force
centroid due to the normal and tangential tractions act-
ing on the muscle bundle in this example may be located
anywhere horizontally along the line y 5 R. ~Fc is a hori-
zontal force vector acting to the right with a magnitude
equal to the muscle tension force T as shown in Figure
A3. Comparing Figures A1 and A2, we note that
~Fc þ ~T ¼ 0, and the sum of the moments due to ~Fc and ~T
about any point is zero. Thus, our expressions for nor-
mal and tangential tractions applied to the muscle bun-
dle by the skull (and conversely equal and opposite trac-
tions applied to the skull by the muscle bundle) yield an
effective force vector and a force centroid that satisfy
fundamental static equilibrium principles.
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