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THE TRANSFORMATION OF DATA FROM ENTOMOLOGICAL 
FIELD EXPERIMENTS SO THAT THE ANALYSIS 

OF VARIANCE BECOMES APPLICABLEt 

By GEOFFREY BEALL 
Dominion Entomological Laboratory, Chatham, Ontario, Canada 

1. INTRODUCTORY 

THE present paper deals with experiments on the control of insects in the field. 
In such experimental work the problem to be investigated is whether more insects 
survive on plots which have been subjected to one treatment than on plots 
subjected to another. It will be shown in the present paper that the numbers of 
insects found per plot must vary in such a way that one cannot, strictly, subject 
the results to the analysis of variance, and it is proposed to find how the data 
may be transformed so that analysis of variance becomes applicable. Such 
transformation has been discussed by Bartlett (1936a,b) in connexion with 
entomological experiments, and by Tippett (1934) in connexion with industrial 
experiments. 

2. EXPERIMENTAL RESULTS CONSIDERED 

The data used in the following work are results from seven insecticidal 
experiments arranged by the author at Chatham, Ontario. The work was carried 
out with replicated blocks containing plots subjected to treatments of which the 
assignment was random. This procedure, normal in agronomic work, was supple- 
mented by one repetition of each treatment within a block. The assignment of 
the repetition of a treatment was independent of the first for that treatment, 
except that, of course, the same plot could not be chosen twice. This repetition 
was carried out to obtain estimates of variability within blocks. In these experi- 
ments complete counts were not made but random sampling was employed. 
Experiments on Pyrausta nubilalis Hubn., reported by Beall et al. (1939), for 
which results are shown in Tables 1 and 2, were made on one area at two different 
periods, whereas experiments on Leptinotarsa decemlineata Say, for which results 
are indicated in Tables 3 and 4, were carried out on contiguous areas at the same 
time. Three, similar experiments were carried out in one place on the tobacco 
hornworm, Phlegethontius quinquemaculata Haw., for which the data are shown 
in Tables 5-7. Reference is also made to the data from a uniformity trial on 
insects of Beall (1939). 

t Publication No. 2101, Division of Entomology, Science Service, Department of Agriculture, 
Ottawa, Canada. 
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Table 1. Numbers of an insect, Pyrausta nubilalis, per plot. Experiment I 

Block 
T rea t- _ _ _ _ - _ _ _ _ _ _ - _ _ _ _ - _ _ _ _ _ _ - _ _ _ _ - _ _ _ _ _ _ - _ _ _ 

ment 
1 2 3 4 5 6 7 8 9 10 

1 15 23 21 31 22 14 18 11 21 34 
1 27 20 23 33 34 27 17 13 20 26 
2 19 12 34 16 20 10 24 23 14 13 
2 11 28 37 16 26 18 19 13 10 9 
3 16 15 22 25 13 21 18 38 27 10 
3 19 16 18 21 19 24 21 18 12 18 
4 14 23 10 19 17 18 7 18 8 17 
4 34 21 9 34 19 9 15 16 12 12 
5 16 16 19 26 15 11 18 23 27 6 
5 23 12 12 10 12 17 13 21 12 9 
6 12 14 17 10 14 24 24 17 7 3 
6 15 16 15 28 13 22 11 7 5 4 
7 43 28 35 36 50 69 62 63 42 40 
7 47 81 30 69 35 29 71 47 50 43 

Table 2. Numbers of an insect, Pyrausta nubilalis, per plot. Experiment II 

Block 
T reat-- _ _ _- _ _ _ -- _ _ _ - _ _ _ 

ment 
1 2 3 4 5 6 7 8 9 10 

1 32 38 27 7 13 14 26 25 22 30 
1 18 40 39 12 19 26 30 19 18 28 
2 6 23 8 4 3 18 26 27 17 19 
2 9 14 20 13 15 14 15 19 19 10 
3 10 21 25 10 13 20 33 48 28 27 
3 4 21 26 4 9 14 30 18 27 18 
4 2 17 11 3 10 10 26 13 22 17 
4 24 13 13 10 6 14 28 11 34 7 
5 13 2 5 0 18 10 33 23 20 34 
5 17 22 23 8 14 16 26 22 15 34 
6 13 10 21 4 10 8 17 15 13 16 
6 17 9 29 5 18 15 19 16 27 23 
7 37 58 28 11 24 44 30 44 56 45 
7 44 71 55 20 26 27 43 52 39 58 
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Table 3. Numbers of an insect, Leptinotarsa decemlineata, 
per plot. Experiment III 

Block 

Treatment 

1 2 3 4 5 6 7 

1 305 391 420 355 287 175 454 
1 207 364 639 527 293 248 397 
2 97 49 21 12 3 10 10 
2 93 51 25 37 4 12 1 
3 270 105 341 469 82 57 221 
3 153 190 348 212 100 285 309 
4 7 42 34 8 1 10 4 
4 12 2 22 4 1 3 3 

Table 4. Numbers of an insect, Leptinotarsa decemlineata, 
per plot. Experiment IV 

Block 

Treatment 

1 2 3 4 5 6 

1 253 145 309 665 99 93 
1 239 265 166 230 302 237 
2 16 13 74 110 14 5 
2 95 54 159 108 14 13 
3 18 130 165 137 153 1 78 
3 40 137 118 142 239 63 
4 2 0 22 6 129 3 
4 2 1 31 8 9 8 

Table 5. Alumbers of an insect, Phlegethontius quinquemaculata, 
per plot. Experiment V 

Block 

Treatment 

1 2 3 4 5 6 

1 6 5 6 13 6 11 
1 4 15 13 6 10 15 
2 0 1 1 0 1 1 
2 2 2 1 4 1 1 
3 15 17 22 28 8 16 
3 12 22 16 11 13 25 
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Table 6. Numbers of an insect, Phlegethontius quinquemaculata, 
per plot. Experiment VI 

Block 

Treatment 1 > _ 3 4 _ _ | 
1 2 3 4 5 6 

1 12 13 9 4 11 4 
1 13 9 5 7 5 10 
2 1 3 6 8 1 5 7 
2 20 9 9 4 12 7 
3 7 9 5 4 8 9 
3 7 9 4 7 3 2 
4 1 1 0 1 4 3 
4 2 2 2 1 4 5 
5 13 7 12 3 6 1 1 
5 1 1 5 4 1 9 8 
6 7 6 8 9 6 5 
6 8 10 2 4 4 12 

Table 7. Numbers of an insect, Phlegethontius quinquemaculata, 
per plot. Experiment VII 

Block 

Treatment 
1 2 3 4 5 6 

1 10 20 14 10 17 14 
1 7 14 12 23 20 1 3 
2 11 21 16 17 19 7 
2 17 11 14 17 21 1 3 
3 0 7 3 2 3 1 
3 1 2 1 1 0 4 
4 3 1 2 4 5 I 5 2 
4 5 6 3 5 5 4 
0 3 3 3 1 3 6 
5 5 5 6 I 1 2 4 
6 11 15 15 13 26 24 
6 9 22 16 1 0 26 13 

3. THE RELATIONSHIP BETWEEN THE STANDARD DEVIATION AND THE MEAN 
IN THE EXPERIMENTAL DATA 

If x is the number of insects on one of a group of small contiguous areas, say 
plots, within a larger area, say a block, let the expectation of x over all these 
plots be M and the standard deviation be o; then over a number of the larger 
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areas, when the insects are distributed in a completely random fashion, from the 
Poisson distribution, 0.2 = M. (1) 

As is discussed by 'Student' (1919) one cannot, however, anticipate that (1) will 
be satisfied when organisms occur in groups, as, say, when insects come from 
masses of eggs, or when there is a change in expectation from plot to plot within 
a block. Generally, 0-2 will tend to be greater than M and we can only say 

02 = f(M). (2) 

The form of f(M), in (2), must be considered carefully, since it bears on the form 
of the transformation which may be developed to make the standard deviation 
independent of the mean. 

In dealing with (2), Bartlett (1936a) started by supposing that, approximately, 

0.2= KM, (3) 

where K is a constant. Generally, in field data, however, the relationship between 
0.2 and M, or of their respective estimates, S2 and x, does not, as in Fig. 1, appear 
to be linear; rather, the departure of S2 from x3 becomes disproportionately great 
as x increases. This relationship between departures and the magnitude of the 
mean has been discussed by Clapham (1936) in connexion with data on the 
distribution of organisms differing from insects as much as flowering plants, and 
he showed that only those distributions with very low mean have the squared 
standard deviation close to the mean. 

Our discussion above on the shortcomings of (3) suggests the conclusion that 

0,2- Moc M (4) 
is generally untrue. We propose to consider the possibility that the curvilinearity 
of (2) might be better met by supposing that 

o,2 - Moc M2. (5) 
Equation (5) leads to 2= M + kM2, (6) 

where k is a constant. It will be noticed that 

k = (o2 - M) M-2 (7) 

is the Charlier coefficient of disturbance from a Poisson distribution. This 
coefficient was employed by Beall (1935). 

It is possible to consider the suitability of (3), as compared with (6), by finding 
how, respectively, they fit observations on S2 and x. To fit exactly is difficult, and 
it was found necessary to fall back on an empirical determination of K and of k; 
thus, if there are a number of pairs of estimates, x and s2, from (3) and (6) we 
estimate K = Zs2/L'x, (8) 

k = (L's2-2X2)/2?;2, (9) 
where L represents the summation over all pairs. 
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Since in the work presented in ? 2, x and 82, being based on only two obser- 
vations, are highly variable, these experiments do not show clearly the suitability 
of (3) and (6). Accordingly, reference is made instead to the data from the uni- 
formity trial on Leptinotarsa decemlineata Say of Beall (1939). When the mean 
and standard deviation of 144 sampling units within each of 16 areas were con- 
sidered, the estimates from (8) and (9) were K = 2*405 and k = 0-2548. For 
these values from (1), (3) and (6), curves, described as lines 1, 2 and 3 respectively, 
are plotted in Fig. 1, the observed values of mean and squared standard deviation 

3 

25- 
2 

20I 

u 
z 

15- 

O 4 X6 I 10 

Fig. 1. The squared standard deviation plotted against the mean for 144 small areas within each 
of 16 large areas; line 1 is from equation (1), line 2 from (3) and line 3 from (6). The counts had 
been made on Leptinotarsa decemlineatc Say. 

are also shown. In the cases where the mean is near unity the departure of the 
squared standard deviation from the mean, i.e. from line 1, appears to be trivial, 
but as the mean increases the departure becomes more marked. It can be seen 
that the observations lie more snugly about line 3 from (6) than about line 2 
from (3). Generally, for the data from field studies the same effect has been 
observed. Such results suggest that (6) may be generally a better approximation 
to the form of f(M) than (3) and make it preferable to proceed with the analysis 
of data from the assumption (6). 

4. THE TRANSFORMATIONS OF FIELD DATA 

Fig. 1 shows clearly how, within an area, the variability of the numbers of 
insects on sub-areas is related to the mean number of insects per sub-area. This 
relationship will make invalid the use of the analysis of variance on experimental 
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results involving counts on insects, since the expectation of the variance 
should be the same for all plots. To overcome this invalidity, Bartlett (1936a) 
suggested transforming the observations, x, from the basis of (3). The transforma- 
tion found was xi, which Bartlett modified to (x + J)k. From ? 3 it was seen, 
however, that for field data the relationship between standard deviation and 
mean may be represented better by equation (6) than by (3), and, since the form 
of the transformation depends on the form of f(M), a fresh transformation must 
be sought. A transformation, as is developed in the Appendix to the present paper, 
is suggested by the method of Tippett (1934), i.e. 

x' = k-i sinh-1 (kx)i. (10) 

An advance note of this transformation was published by Beall (1940). The 
adequacy of this transformation must be judged from the extent to which it 
stabilizes variability. In (10), if we express sinh-1 (kx)k, when kx < 1, as a wel- 
known series, we have 

xi=xi-= kxi+ 430- k2xl 5X2kx+..., (11) 

where it is obvious that for k = O, x' = xi. Of course, for large values of kx, 
x' varies almost as log x, or as the log (x+ 1) used by Williams (1937), and so our 
proposed expansion may be regarded, for practical purposes, as embracing the 
root and logarithmic transformations. 

Table 8 gives the transformation, (10), for a probable range of observations, 
x, and for k at intervals which will probably be close enough for practical purposes. 
This table was computed in part by inverse interpolation from the table of hyper- 
bolic functions of the Smithsonian Mathematical Tables (Becker & Van Orstrand, 
1931), and in part from (12). Should values of x' be required outside those of 
Table 8, these can conveniently be calculated from 

x = k-i loge {(kx)i + (1 + kx)i}. (12) 

In preparing Table 8 the question arose of whether, instead of dealing with 
k-i sinh-1 (kx)k, one should not use k-i sinh-l {kk(x + J)k} in the same way as 
Bartlett (1936a) dealt with the transformation, (x+ 1)i, instead of xi. This 
modification was rejected on the basis of results of the transformation, as dis- 
cussed in ? 5, since it was found that the addition of 2 made little difference and 
did not give, consistently, an improvement. 

For field data, in making the transformation (10), it is necessary to estimate 
the value of k empirically by (9) for which estimates x, of the mean and s, of the 
standard deviation, must be found. The most obvious method in practice of making 
these estimates seems to be to put more than one plot subjected to a given treat- 
ment in a block and so to estimate the chance variation of results for a plot within 
a block. In the present work, as is discussed in ? 2, two plots were subjected to a 
given treatment in each block and this is probably good practice. 
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In the special case where there are two plots for the ith treatment (i = ,n) 
in the jth block (j = 1, ..., N), and so two observations, xjl and Xij2 the estimate 
of the mean will be written xij and of the squared standard deviation 

S9) = 2(Xijl-Xij2 (13) 
Then from (9), we estimate k from 

(in N n N i ( n N A-1 

k = 2 EE(xijl -xij2)2- j(xijl + xij2)j Xjl 1+ Xi2)j (14) 

and the calculation is very light. 

5. RESULTS SHOWING THE EFFECT OF THE TRANSFORMATION 

ON THE VARIABILITY OF DATA 

Trhe adequacy of our proposed transformation may be judged in two ways: 
first, with respect to its effect, which we shall consider in the present section, on 
the differences between repetitions of a treatment within a block, and secondly, 
with respect to its effect, which we shall consider in ? 6, on the behaviour of the 
quantities submitted to the analysis of variance. 

It is a fundamental assumption in the analysis of variance that the chance 
variability for each plot shall be, when the effect of block and of treatment are 
removed, normally distributed with a standard deviation common to all plots, 
in which situation of course the standard deviation of the chance variability for 
a given plot is independent of the expectation for that plot. In the data of the 
present work, where each treatment is repeated in each block, it is possible to 
examine the estimates of this standard deviation, 8ij, and of the expectation, x,j.. 
For a clear graphical illustration of the situation consider Fig. 2, as obtained from 
the original data of Experiment III on Leptinotarsa decemlineata, where sij is 
plotted against xij, and contrast this situation with that obtaining for the 
corresponding quantities s'j and x4j, obtained after transformation (k = 008) 
in Fig. 3. 

In Fig. 2 the points are widely scattered as is natural from a sample of two; 
nevertheless, it is apparent that for the smallest values of xij the values of s8 
are correspondingly small and fall in a close group. In Fig. 3 the cluster of obser- 
vations in the lower left-hand corner of the previous diagram has disappeared, 
and generally the scatter appears to be independent of x4j, so that apparently 
the transformation gave satisfactory results. The nature of the material involved 
is such that it does not seem possible to examine the relationship under con- 
sideration more exactly, nor to summarize exactly the corresponding results for 
the other treatments; it can only be said that the same type of result appeared 
although the magnitude of the relationship before transformation depended on 
the magnitude of the differences between the effects of treatments. 

The results shown in Figs. 2 and 3 suggest that the proposed transformation 
has tended to make the standard deviationi independent of the mean, in accordance 



GEOFFREY BEALL 253 

with the assumptions underlying the analysis of variance. In using this procedure 
one actually assumes, more broadly, that a common standard deviation exists, so 
that the homoscedasticity of observations before and after transformation should 
be tested. Thus it is assumed that xijl and xij2 are observations from a normal 

200 - 

50 0 

100- 

* 
50- 

0 00 

0 100 200 300 400 500 
Xij 

Fig. 2. The standard deviation and mean as estimated from plots by pairs, 
with untransformed data on Leptinotarsa decemlineata. 

2-0 
. 

1*5- 

1.0~~~~ (J* 0 

1*0- 0 

0.5-~~~~ *~~~~~~ 0 

05 * * * * @0 

0 2 4 / 6 8 Xijj 
Fig. 3. The standard deviation and mean as estimated from plots by pairs, with the transformed 

data on Leptinotarsa decemlineata Say, i.e. using x' = k-i sinh-' (kx)1, (k = 0 08). 

population with a standard deviation, o, which is independent of i and j. Then 

_(x (Zzk- )2}-2 is distributed as x2 with one degree of freedom.t Accordingly, 

t In the L1 test, discussed by Nayer (1936), this case of estimates of standard deviation with 
one degree of freedom is troublesome since zero values tend to arise when dealing with grouped or 
integral observations. When this is the case L1, which is the ratio of an arithmetic to a geometric 
mean of sums of squares, cannot be calculated. The present treatment may therefore have a wider 
atrnlication. 

I7-2 



254 Transformation of data from entomological field experiments 

yi= (x6ijl - xj2)/V2o- should be distributed normally with unit standard devia- 
tion for all i and j. In order to test the hypothesis of normality with unit standard 
deviation it is only necessary to test for leptokurtosis; for the distribution must 
be symmetrical since the sign of differences, and therefore of yij, is a matter of 
chance. Since the number of items involved will almost certainly be < 100, and 
since the population, mean is zero, the wn criterion of Geary (1935) will provide an 
appropriate test. In using this criterion we must find the ratio of the mean 
deviation to the standard deviation, i.e. 

n nN ( n N _ 

Wn = I xjl -Xij2 f nN EE (Xijl- Xj2) (15) 
i=lj=l i=lj=1 

Of course, values of w,, may be calculated for transformed data by substitution 
of XZ jk for Xijk. 

Table 9. The w. test on the homoscedaisticity of counts by plots 
within a block for six field experiments 

Untransformed Transformed V Transformed 

{Experi- | Upper Lower (Bartlett) (Beall) 
mxent anN 5% 5 % - _ _ - _ _ _- _ -_ _ - - _ - 

lImit limit Departure Departure Esti- Em- Departure 
Wn by S.D. wn by S.D. mated ployed n by S.D. 

I 70 0-841 0 757 0 6659 - 5 33 0 7525 - 191 0 078 0 08 0-7846 - 0-64 
II 70 0 841 0 757 0 7885 - 0 49 0 7807 - 079 0 046 0 04 0 7499 - 2 01 
III 28 0 866 0 737 0 5973 - 5 33 0 6431 -415 0 084 0 08 0 6838 - 3 11 
IV 24 0 872 0 732 0 5692 - 5 67 0 6948 - 267 0 285 0 30 0 7370 - 166 
V 18 0 881 0 728 0 7554 -1 16 0 8155 +0 13 0 082 0 08 0-7823 -0 58 
VI 36 0 857 0 745 0 7959 - 0 22 0 8166 +0 38 1 0 019 0 02 0 8130 +0 28 

Values of w., from the untransformed observations and from the transformed 
observations, both following Bartlett (i.e. the transformation (x + )i) and 
following the line suggested in the present paper, are shown in Table 9 for the 
field data of Tables 1-6. For the second transformation the values of k as calculated 
from (14) are shown as well as the nearest value of k entered in Table 8. For 
each experiment the value of nN and also the 0 05 limits of probability, from 
Geary (1935), are shown. There are also shown the departures of observed Wn 
from the expected value in terms of the standard deviation, a useful criterion 
since the distribution of wn is almost normal. From Table 9 it can be seen that 
out of the three experiments in which Wn fell beyond the lower 5 % limit of 
probability for the untransformed data and the data transformed as (x+ 1)i, 
in only one experiment did Wn fall so with the final transformation. The results 
for Experiment II, in which Wn is decreased by the transformation, are peculiar. 
Consideration of the departures from the mean in terms of the standard devia- 
tion indicates more clearly the improvement effected by each transformation 
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and how the transformation suggested in the present work secures an improve- 
ment of the same, but more marked, character than that secured from the 
transformation of Bartlett. The results suggest that while homoscedasticity may 
not be attained always, it will be approached by means of the proposed trans- 
formation. 

6. THE EFFECT OF THE TRANSFORMATION ON THE ANALYSIS 

OF VARIANCE 

As was indicated at the beginning of ? 5, our proposed transformation besides 
making the variability within a block for a repeated treatment the same for all 
treatments and blocks, should also provide quantities satisfying the assump- 
tions underlying the analysis of variance. Since it is not quite clear how, in so far 
as the transformation is satisfactory in the first way, it will necessarily be satis- 
factory in the second, it will be well to consider directly the suitability of our 
transformed values for the analysis of variance. 

In the application of the analysis of variance one would deal with xij rather 
than with Xijk and suppose that 

xii. = A + Bi + Cj + Dij, (16) 

where A is a contribution from the general level of population on the experi- 
mental area, Bi the contribution of the ith treatment and Cj the contribution of 
the jth block. The remainder term, Dij, is called the interaction of treatments and 
blocks. Of course, the present discussion on the untransformed values, xij, 
holds for the transformed values, xj = (xt1 + x*j2) when the appropriate 
symbols, A', B*, CQ and Dj are used. 

In material satisfying the conditions underlying the analysis of variance, for 
the observations under each treatment, the calculated squared standard devia- 
tion is 1 N 

s N-1 jl(x,j. )2. (17) 

Following the argument of the analysis of variance, xj - xi, of which the mean 
is 0, is an estimate of Cj + Dij, in which the two terms are independent; hence the 
expectation of S2 is C2 = 0-2 (18) 

where ocj and oDj are the standard deviations of the parameters, Ci and Dij, 
respectively, and are independent of treatment. Accordingly, si should be in- 
dependent of treatment and distributed as an estimate of oi, having N - 1 degrees 
of freedom. Conversely, if xij. cannot be built of the independent terms of (16), 
then the various values of si will not be distributed as estimates of a single 
standard deviation. The hypothesis that the values of si in any one experiment 
are estimates of one quantity may be tested.t 

t From correspondence with Dr R. W. B. Jackson, the writer has learned that he had arrived 
independently at the same test. 
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The results of the tests on the homogeneity of the values, si, within the six 
experiments treated in the present paper are presented in Table 10, where the 
value of the L1 criterion is shown for the original data and for the transformed 
values together with the appropriate 0*05 and 0.01 levels of probability (Nayer, 
1936). From Table 10 it can be seen that of the values of L1 obtained from the 
original data, all but one are near or beyond the 0 05 level of significance, but 
that after transformation all are moved in to less significant values. Accordingly, 
the values of si, when calculated from the original data, appear heterogeneous but 
the corresponding values obtained after the transformation appear homogeneous. 
Thus it is more probable that the analysis of variance is applicable to the trans- 
formed data than to the untransformed. 

Table 10. The homogeneity, as measured by the criterion L1, of the estimates 
si for various values of i before and after transformation 

Experiment 

1 2 3 4 [5 6 

LI before transformation 0 867 0 833 0.325 0 657 0 344 0 680 

LI after transformation 0 864 0 941 0 766 0 688 0 813 0 730 
1 % limit 0 757 0 757 0 604 0 542 0 514 0 583 
5 % limit - 03812 0 812 0 707 0 656 0 648 0 673 

In Table 10 we have tested the homogeneity of the estimates, si, as in ? 5 we 
tested the homogeneity of sij, that is without reference to the values of the 
associated means. In view of our original assumptions we are, however, interested 
in the possibility that the standard deviations, as calculated, might show every 
sign of being estimates of a common standard deviation and yet be dependent 
on the associated means. Accordingly, we have investigated such dependence 
roughly by fitting by least squares a first order regression of si on xi.. From this 
fitting we record the sign of the regression as follows: 

Experiment 

1 2 31 4 5 6 

Before transformation I +* + +* I + ** + + 
After transformation - + - -* + + 
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By a single asterisk we have indicated cases where the reduction in variability 
effected by the regression passed the 5 % probability limit and by a double 
asterisk where it passed the 1 % limit. Several points may be noted. (1) In two 
cases (Experiments 2 and 6) after transformation the residual sun1 of squares 
about the regression was greater than the reduction in squares due to the regres- 
sion, whereas it was consistently less before transformation. (2) As can be seen 
above, the regression generally did not effect a significant reduction in variability 
after transformation but did before (the small number of degrees of freedom made 
high significance difficult of attainment). (3) After transformation the sign of 
the regression seemed to be a chance matter, whereas before transformation it 
was consistently positive. These results suggest that the transformation pro- 
posed did tend to make the variability within a given treatment independent of 
the mean for that treatment. 

7. THE EFFECT OF TRANSFORMATION UPON THE CONCLUTSIONS 

FROM THE ANALYSIS OF VARIANCE 

It has been shown in ?? 5 and 6 that the analysis of variance can be made on 
entomological data when a suitable transformation has been effected. It is of 
practical interest to see what numerical effect such transformation will have upon 
tests on the significance of, say, the effect of treatment and the significance of 
differences for treatments. 

First, consider the numerical results to be obtained from the analysis of 
variance (1) without and (2) with transformation. Thus the mean square ascrib- 
able to blocks, treatments and their interaction is shown in Table 11, for six 
experiments of which the data are given in ? 2; parallel results are presented for 
untransformed observations and for observations transformed by (10) with the 
values of k from Table 9. To facilitate the comparison of the results, the mean 
square for blocks and for treatments is expressed in terms of the estimate for 
interaction, as the F of Snedecor (1934), and presented in each case. The trans- 
formation of the data has modified the conclusions to be drawn from the analysis 
of variance in Table 1 1, in that there are considerable changes in the criterion, F, 
for treatments or for blocks. In the examples shown the effect of treatments was 
highly significant in all cases and so the changes introduced by transformation 
did not alter the conclusions, as would have been the case for less definite effects. 

Consider next the effect of transformation on the significance of differences 
between the means for treatments as tested by the criterion, t, calculated with 
such estimates of mean square as the interaction of Table 11. For illustration, 
values of t, from the data on Leptinotarsa decemlineata (Experiment III), are 
shown in Table 12 for each possible comparison of treaments when untransformed 
data are used, when the transformation, (x + 1)i, as suggested by Bartlett (1936a) 
is used, and when the transformation, k-i sinh-1 (kx)i, as suggested in the present 
paper is used. In order that the influence of the level of population under each 



Table 11. The analysis of variance of untransformed and 
transformed data in six experiments 

Untransformed data Transformed data 
D egrees __ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ 

Variation of 
freedom Mean Mean F 

square square 

Experiment I. P. nubilalis 
Between blocks 9 92-8 1 21 0-565 1 66 
Between treatments 6 2,839-0 36*95 7-51 22-03 
Interaction 54 76-8 0-341 

Experiment II. P. nubilalis 
Between blocks 1 9 577-0 6-72 537 10-55 
Between treatments 1 6 1,721-0 20-04 8-69 17-07 
Interaction 54 85-9 0 509 

Experiment III. L. decemlineata 
Between blocks 6 20,172-0 2-26 4-67 3 03 
Between treatments 3 390,932-0 43-77 111-5 72-16 
Interaction 18 8,931-0 1 54 

Experiment IV. L. decemlineata 
Between blocks 5 12,960.0 2-06 2-06 1-96 
Between treatmients 3 124,054.0 20-40 20-40 19-41 
Interaction 15 6,727 0 1-05 

Experiment V. P. quinquemaculata 
Between blocks 5 27.4 2*74 0*349 4-19 
Between treatments 2 752-0 75.33 19.5 233 77 
Interaction 10 9-98 0-083 - 

Experiment VI. P. quinquemaculata 
Between blocks 5 41-7 4*13 1.50 412 
Between treatments 5 66*2 6*55 3*33 9*14 
Interaction 25 10*1 - 0*365 - 

Table 12. The values of t, in the comparison of means, as calculated from the 
untransformed and the transformed data of Experiment III on Leptinotarsa 
decemlineata 

Comparison urMeans for t without t from t from 
data transformation (x+ -1) i k-I sinh-I (kx)i 

362 30 +9.27** +11-33** + 9.92** 
362 224 +3.84** + 3.52** + 2.11* 

IXl. -x4.. 1 362 11 + 9.82** + 12.89** + 12.46** 
x2 -x3 . 30 224 - 5.43** - 7.81** - 7.81** 
IX2..-x4. . f f30 11 +0 54 + 1*56 + 2.54* 

X3__-X4 [ 224 11 +5.98** + 9.37** +10.35** 
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treatment may be judged, there are shown, also in Table 12, the means for the 
untransformed data. The values of t falling beyond the 0.01 level of significance 
have been marked with two asterisks and the values beyond the 0 05 level with 
one. It can be seen that the transformation resulted in a profound alteration in 
the conclusions. Apparently on account of the dependence of variance on mean 
in untransformed data, the pooled estimate of variance was originally too low 
for the treatments which resulted in high populations and too high for the treat- 
ments which resulted in low populations. Thus, in the comparison of the first 
and third treatments, which appeared to have the two highest surviving popula- 
tions, the value of t calculated from untransformed values was high. In the other 
extreme case, the comparison between the second and fourth treatments, the 
value of t, as calculated from untransformed values was very low. It can be seen 
further, that the first transformation only secured in part the modification in 
the value of t that was secured by the second transformation. 

8. THE PROCEDURE OF TRANSFORMATION IN PRACTICE 

The methods which were found applicable in the preceding discussion will 
now be illustrated in the transformation of the data shown in Table 7 (Experinient 
VII) on Phlegethontiu8 quinquemaculata, of the same type as the experiments 
previously discussed in the present paper. The steps in the analysis will be set out 
with the purpose of providing a model for procedure in estimating the constant, 
k, which will be used to effect a transformation of the data so that the analysis 
of variance may be made. 

Supposing that the experiment has been laid out with a repetition of each 
treatment in each block, the procedure of estimating k makes it first necessary to 
find the sum and the absolute difference of each pair of plots subjected to a given 

n N 
treatment in a given plot andthen to sum the sums, z z (xijl + xij2), and the sums 

nN i=l j n .N 
squared, ( X(jl + xiJ2)2, and also the differences squared, E (Xijl - Xi2)2, 

over all such pairs and by substituting the results in (14) to find k. In the case 
being used for an illustration the two plots subjected to the first treatment in 
each block gave respectively 10 and 7, 20 and 14, 14 and 12, 10 and 23, 17 and 20, 
14 and 13, so that 

N 
(Xljl + Xlj2) = (IO + 7) + (20 + 14) + (14 + 12) + 174. 

Similarly, 
N 
z (Xljl + Xlj2)2 = (10 + 7)2 + (20 + 14)2+... = 5308 
j=1 

and similarly, 
N 

(Xljl-Xlj2 )2 = (10 - 7)2 + (20-14)2+ = 228. 
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Of course, in estimating k the summations are not limited to one treatment but 
must be extended over all in the experiments. If this is done we find 

n N n N n N 

(X1jl + xij2) = 684, E j(xjl + xj2)2 = 19,656, E E j (x - Xij2)2 = -708. 
i=l j=l i=l j=l i=l j=l 

From (14) we estimate k = 2(708 -684) 0002, 19,656 

and referring to Table 8, p. 250, use k = 0*00 as the nearest value occurring there. 
Of course, in this case, the transformation is simply xi. 

Now from the above result it will be possible to replace the observed values of 
Table 7 with the corresponding transformed values from the first column of 
Table 8. Thus in Table 7 replace in the first row: 10, 20, 14, 10, 17 and 14, by 
3'16, 4.47, 3*74, 3.16, 4412 and 3-74. With such transformed values we can now 
proceed to carry out a routine analysis of variance which will be facilitated by 
working with the sum for each pair of plots in a given block with a given treatment. 
For example, the final analysis of variance for Experiment VII would be carried 
out with the values of Table 13. 

Table 13. Transformed and summed values to be used in the analysis of 
variance for Experiment VII on P. quinquemaculata 

Block 

Treatment 

2 3 4 5 6 

1 5-81 8*21 7-20 7*96 8-59 7.35 
2 7.44 7.90 7*74 8-24 8-94 6-26 
3 1 00 4-06 2*73 2*41 1-73 3 00 
4 3*97 5-91 3.73 4-48 4-48 3-41 
5 3*97 3 97 4-18 2-0) 3 14 4 45 
6 6*32 8-56 7*87 6 77 i 10-20 8-51 

9. SUTMMARY AND CONCLUSIONS 

The foregoing work is a study of experimental results from seven field experi- 
ments on the control of insects. In such data, the standard deviation of the 
number of insects per plot varies with the mean. By the transformation, 
x' = k-I sinh-1 (kx)1, where k is a constant and x an observation, the data were 
put in a form for which the standard deviation approached a constant independent 
of the mean. The estimation of the one constant, k, necessary for the transforma- 
tion was made possible by the design of the experiments with repetition of treat- 
ments within blocks. In practice, the transformation gave good results so that 
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analysis of variance could be made. From the analysis of the transformed data, 
the results were found to differ markedly from those which would have been 
obtained from the untransformed data. 
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APPENDIX 

As has been said, the transformation of (10) was suggested by the method used 
by Tippett (1934, p. 61). The procedure is as follows. 

It is required to find x' = f(x), such that the standard deviation, yx of x', 
shall be approximately constant. Let us write 

x' = f(M)+f'(M) (x-M)+.*., (19) 

where M is the expectation of x and whence, approximately, 

(x'-M') = f '(M) (x-M), (20) 
where M' is the expectation of x'. Hence 

o02, = {f '(M)}2 o2, (21) 

where o- is the standard deviation of the observations, x. Replacing ox in (21) 
by a constant, c, as is the purpose of our operation, and suibstituting for C from 
equation (6), p. 247, we have 

f '(M) = c(M + kM2)-A, (22) 
where k is, as has been previously discussed, a constant peculiar to our data. 
Integrating in (22), 

f(M) = 2ck-i sinh-1 (kM)i. (23) 
From (23) the form of the function suggested is sinh-1 (kx)i, but it is wise instead 
to use k-I sinh-1 (kx)1, since the transformation then becomes identical, as shown 
in (11), with the established transformation, xi, when k = 0. 

As Tippett (1934) says: 'This derivation is not mathematically sound, and 
the result is only justified if on application it is found to be satisfactory.' The 
writer would have hesitated to have used it had it not already led to useful 
transformations in cases analogous to the present, namely to xi where x comes 
from a Poisson distribution, to sin-lpi where p comes from a binomial distribu- 
tion and, according to Tippett, to tanh-1 r. where r is the correlation coefficient. 
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