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THE TRANSFORMATION OF DATA FROM ENTOMOLOGICAL
FIELD EXPERIMENTS SO THAT THE ANALYSIS
OF VARIANCE BECOMES APPLICABLEY

By GEOFFREY BEALL
Dominion Entomological Laboratory, Chatham, Ontario, Canada

1. INTRODUCTORY

THE present paper deals with experiments on the control of insects in the field.
In such experimental work the problem to be investigated is whether more insects
survive on plots which have been subjected to one treatment than on plots
subjected to another. It will be shown in the present paper that the numbers of
insects found per plot must vary in such a way that one cannot, strictly, subject
the results to the analysis of variance, and it is proposed to find how the data
may be transformed so that analysis of variance becomes applicable. Such
transformation has been discussed by Bartlett (1936a,b) in connexion with
entomological experiments, and by Tippett (1934) in connexion with industrial
experiments.

2. EXPERIMENTAL RESULTS CONSIDERED

The data used in the following work are results from seven insecticidal
experiments arranged by the author at Chatham, Ontario. The work was carried
out with replicated blocks containing plots subjected to treatments of which the
assignment was random. This procedure, normal in agronomic work, was supple-
mented by one repetition of each treatment within a block. The assignment of
the repetition of a treatment was independent of the first for that treatment,
except that, of course, the same plot could not be chosen twice. This repetition
was carried out to obtain estimates of variability within blocks. In these experi-
ments complete counts were not made but random sampling was employed.
Experiments on Pyrausta nubilalis Hubn., reported by Beall et al. (1939), for
which results are shown in Tables 1 and 2, were made on one area at two different
periods, whereas experiments on Leptinotarsa decemlineata Say, for which results
are indicated in Tables 3 and 4, were carried out on contiguous areas at the same
time. Three similar experiments were carried out in one place on the tobacco
hornworm, Phlegethontius quinquemaculata Haw., for which the data are shown
in Tables 5-7. Reference is also made to the data from a uniformity trial on
insects of Beall (1939).

1 Publication No. 2101, Division of Entomology, Science Service, Department of Agriculture,
Ottawa, Canada.



244 Transformation of data from entomological field experiments

Table 1. Numbers of an insect, Pyrausta nubilalis, per plot. Experiment 1

Block
Treat-
ment
1 2 3 4 5 6 7 8 9 10
1 15 23 21 31 22 14 18 11 21 34
1 27 20 23 33 34 27 17 13 20 26
2 19 12 34 16 20 10 24 23 14 13
2 11 28 37 16 26 18 19 13 10 9
3 16 15 22 25 13 21 18 38 27 10
3 19 16 18 21 19 24 21 18 12 18
4 14 23 10 19 17 18 7 18 8 17
4 34 21 9 34 19 9 15 16 12 12
5 16 16 19 26 15 11 18 23 27 6
5 23 12 12 10 12 17 13 21 12 9
6 12 14 17 10 14 24 24 17 7 3
6 15 16 15 28 13 22 11 7 5 4
7 43 28 35 36 50 69 62 63 42 40
7 47 81 30 69 35 29 71 47 50 43

Table 2. Numbers of an tnsect, Pyrausta nubilalis, per plot. Experiment 11

Block

Treat-

ment
1 2 3 4 5 6 7 8 9 10
1 32 38 27 7 13 14 26 25 22 30
1 18 40 39 12 19 26 30 19 18 28
2 6 23 8 4 3 18 26 27 17 19
2 9 14 20 13 15 14 15 19 19 10
3 10 21 25 10 13 20 33 48 28 27
3 4 21 26 4 9 14 30 18 27 18
4 2 17 11 3 10 10 26 13 22 17
4 24 13 13 10 6 14 28 11 34 7
b 13 2 5 0 18 10 33 23 20 34
5 17 22 23 8 14 16 26 22 15 34
6 13 10 21 4 10 8 17 15 13 16
6 17 9 29 5 18 15 19 16 27 23
7 37 58 28 11 24 4 30 44 56 45
7 44 71 55 20 26 27 43 52 39 58
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Table 3. Numbers of an insect, Leptinotarsa decemlineata,

per plot. Experiment 111

Block
Treatment
1 2 3 4 5 6 7
1 305 391 420 355 287 175 454
1 207 364 639 527 293 248 397
2 97 49 21 12 3 10 10
2 93 51 25 37 4 12 1
3 270 105 341 469 82 57 221
3 153 190 348 212 100 285 309
4 7 42 34 8 1 10 4
4 12 2 22 4 1 3 3

Table 4. Numbers of an insect, Leptinotarsa decemlineata,
per plot. Experiment IV

Block
Treatment
1 2 3 4 5 6
1 253 145 309 665 99 93
1 239 265 166 230 302 237
2 16 13 74 110 14 5
2 95 54 159 108 14 13
3 18 130 165 137 153 78
3 40 137 118 142 239 63
4 2 0 22 6 129 3
4 2 1 31 8 9 8

Table 5. Numbers of an insect, Phlegethontius quinquemaculata,

per plot. Experiment V

Block
Treatment

1 2 3 4 5 6
1 6 5 6 13 6 11
1 4 15 13 6 10 15
2 0 1 1 0 1 1
2 2 2 1 4 1 1
3 15 17 22 28 8 16
3 12 22 16 11 13 25
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Table 6. Numbers of an insect, Phlegethontius quinquemaculata,
per plot. Experiment VI

Block

Treatment
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Table 7. Numbers of an insect, Phlegethontius quinquemaculata,
per plot. Experiment VII

Block
Treatment
1 2 3 4 5 6
1 10 20 14 10 17 14
1 7 14 12 23 20 13
2 11 21 16 17 19 7
2 17 11 14 17 21 13
3 0 7 3 2 3 1
3 1 2 1 1 0 4
4 3 12 4 5 5 2
4 5 6 3 5 5 4
5 3 3 3 1 3 6
5 5 6 1 2 4
6 11 15 15 13 26 24
6 9 22 16 | 10 26 13

3. THE RELATIONSHIP BETWEEN THE STANDARD DEVIATION AND THE MEAN
IN THE EXPERIMENTAL DATA

If 2 is the number of insects on one of a group of small contiguous areas, say
plots, within a larger area, say a block, let the expectation of x over all these
plots be M and the standard deviation be o; then over a number of the larger
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areas, when the insects are distributed in a completely random fashion, from the
Poisson distribution, o2 = M. (1)

As is discussed by ‘Student’ (1919) one cannot, however, anticipate that (1) will
be satisfied when organisms occur in groups, as, say, when insects come from
masses of eggs, or when there is a change in expectation from plot to plot within
a block. Generally, o2 will tend to be greater than M and we can only say

o = f(M). (2)

The form of f(M), in (2), must be considered carefully, since it bears on the form
of the transformation which may be developed to make the standard deviation
independent of the mean.

In dealing with (2), Bartlett (1936a) started by supposing that,approximately,

o2 = KM, (3)

where K is a constant. Generally, in field data, however, the relationship between
a2 and M, or of their respective estimates, s? and Z, does not, as in Fig. 1, appear
to be linear; rather, the departure of s from Z becomes disproportionately great
as T increases. This relationship between departures and the magnitude of the
mean has been discussed by Clapham (1936) in connexion with data on the
distribution of organisms differing from insects as much as flowering plants, and
he showed that only those distributions with very low mean have the squared
standard deviation close to the mean.

Our discussion above on the shortcomings of (3) suggests the conclusion that

oc?—Moc M (4)
is generally untrue. We propose to consider the possibility that the curvilinearity
of (2) might be better met by supposing that

02— Moc M2 ()

Equation (5) leads to 0% =M+ kM?, (6)
where k is a constant. It will be noticed that

k= (c2—M)M-2 (7)

is the Charlier coefficient of disturbance from a Poisson distribution. This
coefficient was employed by Beall (1935).

It is possible to consider the suitability of (3), as compared with (6), by finding
how, respectively, they fit observations on s? and z. To fit exactly is difficult, and
it was found necessary to fall back on an empirical determination of K and of k;
thus, if there are a number of pairs of estimates, Z and s2, from (3) and (6) we

estimate K = 35?37, (8)
b = (S5 — ZF)/ 2%, )

where 2 represents the summation over all pairs.
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Since in the work presented in § 2, Z and s2, being based on only two obser-
vations, are highly variable, these experiments do not show clearly the suitability
of (3) and (6). Accordingly, reference is made instead to the data from the uni-
formity trial on Leptinotarsa decemlineata Say of Beall (1939). When the mean
and standard deviation of 144 sampling units within each of 16 areas were con-
sidered, the estimates from (8) and (9) were K = 2-405 and k = 0-2548. For
these values from (1), (3) and (6), curves, described as lines 1, 2 and 3 respectively,
are plotted in Fig. 1, the observed values of mean and squared standard deviation

3
L4 °

204

0 kB Ll Ll L]
0 2 i == 6 8 10
X

Fig. 1. The squared standard deviation plotted against the mean for 144 small areas within each
of 16 large areas; line 1 is from equation (1), line 2 from (3) and line 3 from (6). The counts had
been made on Leptinotarsa decemlineata Say.

are also shown. In the cases where the mean is near unity the departure of the
squared standard deviation from the mean, i.e. from line 1, appears to be trivial,
but as the mean increases the departure becomes more marked. It can be seen
that the observations lie more snugly about line 3 from (6) than about line 2
from (3). Generally, for the data from field studies the same effect has been
observed. Such results suggest that (6) may be generally a better approximation
to the form of f(M) than (3) and make it preferable to proceed with the analysis
of data from the assumption (6).

4. THE TRANSFORMATIONS OF FIELD DATA

Fig. 1 shows clearly how, within an area, the variability of the numbers of
insects on sub-areas is related to the mean number of insects per sub-area. This
relationship will make invalid the use of the analysis of variance on experimental
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results involving counts on insects, since the expectation of the variance
should be the same for all plots. To overcome this invalidity, Bartlett (1936a)
suggested transforming the observations, z, from the basis of (3). The transforma-
tion found was z*, which Bartlett modified to (z+ })}. From §3 it was seen,
however, that for field data the relationship between standard deviation and
mean may be represented better by equation (6) than by (3), and, since the form
of the transformation depends on the form of f(M), a fresh transformation must
be sought. A transformation, as is developed in the Appendix to the present paper,
is suggested by the method of Tippett (1934), i.e.

z' = k~tginh-1 (kx)t. (10)

An advance note of this transformation was published by Beall (1940). The
adequacy of this transformation must be judged from the extent to which it
stabilizes variability. In (10), if we express sinh—! (kz)}, when kx <1, as a well-
known series, we have

x = at—Lhat+ Skt — S35 k3t + .., (11)

where it is obvious that for k = 0, 2’ = zt. Of course, for large values of kz,
z’ varies almost as log z, or as the log (x+ 1) used by Williams (1937), and so our
proposed expansion may be regarded, for practical purposes, as embracing the
root and logarithmic transformations.

Table 8 gives the transformation, (10), for a probable range of observations,
z, and for k at intervals which will probably be close enough for practical purposes.
This table was computed in part by inverse interpolation from the table of hyper-
bolic functions of the Smithsonitan Mathematical Tables (Becker & Van Orstrand,
1931), and in part from (12). Should values of ' be required outside those of
Table 8, these can conveniently be calculated from

2’ = k~tlog, {(kz)t + (1 + kx)i}. (12)

In preparing Table 8 the question arose of whether, instead of dealing with
k-tsinh-! (kx)}, one should not use k—tsinh—!{kt(x+ })}} in the same way as
Bartlett (1936a) dealt with the transformation, (z+ 3})}, instead of x'. This
modification was rejected on the basis of results of the transformation, as dis-
cussed in § 5, since it was found that the addition of } made little difference and
did not give, consistently, an improvement.

For field data, in making the transformation (10), it is necessary to estimate
the value of k empirically by (9) for which estimates Z, of the mean and s, of the
standard deviation, must be found. The most obvious method in practice of making
these estimates seems to be to put more than one plot subjected to a given treat-
ment in a block and so to estimate the chance variation of results for a plot within
a block. In the present work, as is discussed in § 2, two plots were subjected to a
given treatment in each block and this is probably good practice.
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252 Transformation of data from entomological field experiments

In the special case where there are two plots for the ith treatment (¢ = 1, ..., %)
in the jth block (j = 1,...,N), and so two observations, z;;, and x;;,, the estimate

of the mean will be written z;; and of the squared standard deviation

33;' = $(@s51 — 2i)>

Then from (9), we estimate & from

(13)

n N N -1

n N n
=2{3 Y (x Lij1— 132) § 2( ij1 T Zijo } {E > ( 1,]1+x£j2)2} (14)

t=1j=1 == i=1j=1

and the calculation is very light.

5. RESULTS SHOWING THE EFFECT OF THE TRANSFORMATION
ON THE VARIABILITY OF DATA

The adequacy of our proposed transformation may be judged in two ways:
first, with respect to its effect, which we shall consider in the present section, on
the differences between repetitions of a treatment within a block, and secondly,
with respect to its effect, which we shall consider in § 6, on the behaviour of the
quantities submitted to the analysis of variance.

It is a fundamental assumption in the analysis of variance that the chance
variability for each plot shall be, when the effect of block and of treatment are
removed, normally distributed with a standard deviation common to all plots,
in which situation of course the standard deviation of the chance variability for
a given plot is independent of the expectation for that plot. In the data of the
present work, where each treatment is repeated in each block, it is possible to
examine the estimates of this standard deviation, s;;, and of the expectation, ;;,
For a clear graphical illustration of the situation consider Fig. 2, as obtained from
the original data of Experiment III on Leptinotarsa decemlineata, where s;; is
plotted against x;;, and contrast this situation with that obtaining for the
corresponding quantities s;; and x;;, obtained after transformation (k = 0-08)
in Fig. 3.

In Fig. 2 the points are widely scattered as is natural from a sample of two;
nevertheless, it is apparent that for the smallest values of z;; the values of s,
are correspondingly small and fall in a close group. In Fig. 3 the cluster of obser-
vations in the lower left-hand corner of the previous diagram has disappeared,
and generally the scatter appears to be independent of xj;, so that apparently
the transformation gave satisfactory results. The nature of the material involved
is such that it does not seem possible to examine the relationship under con-
sideration more exactly, nor to summarize exactly the corresponding results for
the other treatments; it can only be said that the same type of result appeared
although the magnitude of the relationship before transformation depended on
the magnitude of the differences between the effects of treatments.

The results shown in Figs. 2 and 3 suggest that the proposed transformation
has tended to make the standard deviationindependent of the mean, in accordance
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with the assumptions underlying the analysis of variance. In using this procedure
one actually assumes, more broadly, that a common standard deviation exists, so
that the homoscedasticity of observations before and after transformation should
be tested. Thus it is assumed that z;; and z,;, are observations from a normal

2004
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Fig. 2. The standard deviation and mean as estimated from plots by pairs,
with untransformed data on Leptinotarsa decemlineata.
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Fig. 3. The standard deviation and mean as estimated from plots by pairs, with the transformed
data on Leptinotarsa decemlineata Say, i.e. using &’ = k=% sinh~! (kx)}, (k =0-08).

population with a standard deviation, o, which is independent of 7 and j. Then
2
{ X (@55 —xﬁ.)z} o% is distributed as x* with one degree of freedom.t Accordingly,
k=1

+ In the L, test, discussed by Nayer (1936), this case of estimates of standard deviation with
one degree of freedom is troublesome since zero values tend to arise when dealing with grouped or
integral observations. When this is the case L, which is the ratio of an arithmetic to a geometric
mean of sums of squares, cannot be calculated. The present treatment may therefore have a wider

application.
17-2
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Yi; = (@51 — 2;55)[/20 should be distributed normally with unit standard devia-
tion for all 7 and j. In order to test the hypothesis of normality with unit standard
deviation it is only necessary to test for leptokurtosis; for the distribution must
be symmetrical since the sign of differences, and therefore of y,;, is a matter of
chance. Since the number of items involved will almost certainly be < 100, and
since the population mean is zero, the w,, criterion of Geary (1935) will provide an
appropriate test. In using this criterion we must find the ratio of the mean
deviation to the standard deviation, i.e.

n N \ n N —%
wy, =12 X% |xij1—xij2|J nN ¥ % (@1 — @i52)" (15)
i=1j=1 i=1j=1

Of course, values of w, may be calculated for transformed data by substitution
of 7, for ;5.

Table 9. The w,, test on the homoscedasticity of counts by plots
within a block for six field experiments

Lixperi-
ment

11
111
v

VI

Transformed Transformed
Untransformed (Bartlett) Value of k (Beall)
Upper | Lower
aN | 59 5% |- —
limit limit Departure w Departure| Esti- Em- w Departure
Wn by s.p. n by s.p. | mated | ploye n by s.p.
70 0-841 0-757 0-6659 -533 0-7525 -191 0-078 0-08 0-7846 -0-64
70 0-841 0-757 0-7885 -0-49 0-7807 -0-79 0-046 0-04 0-7499 -2-01
28 0-866 0-737 0-5973 -5-33 0-6431 -4-15 0-084 0-08 0-6838 -311
24 0-872 0-732 0-5692 -5-67 0-6948 -2-67 0-285 0-30 0-7370 -1-66
18 0-881 0-728 0-7554 -116 0-8155 +0-13 0-082 0-08 0-7823 -0-58
36 0-857 0-745 0-7959 -0-22 0-8166 +0-38 0-019 0-02 0-8130 +0-28

Values of w,, from the untransformed observations and from the transformed
observations, both following Bartlett (i.e. the transformation (z+ })!) and
following the line suggested in the present paper, are shown in Table 9 for the
field data of Tables 1-6. For the second transformation the valuesof k as calculated
from (14) are shown as well as the nearest value of k entered in Table 8. For
each experiment the value of nV and also the 0-05 limits of probability, from
Geary (1935), are shown. There are also shown the departures of observed w,
from the expected value in terms of the standard deviation, a useful criterion
since the distribution of w,, is almost normal. From Table 9 it can be seen that
out of the three experiments in which w, fell beyond the lower 59, limit of
probability for the untransformed data and the data transformed as (z+ })3,
in only one experiment did w, fall so with the final transformation. The results
for Experiment II, in which w,, is decreased by the transformation, are peculiar.
Consideration of the departures from the mean in terms of the standard devia-
tion indicates more clearly the improvement effected by each transformation
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and how the transformation suggested in the present work secures an improve-
ment of the same, but more marked, character than that secured from the
transformation of Bartlett. The results suggest that while homoscedasticity may
not be attained always, it will be approached by means of the proposed trans-
formation.

6. THE EFFECT OF THE TRANSFORMATION ON THE ANALYSIS
OF VARIANCE

As was indicated at the beginning of § 5, our proposed transformation besides
making the variability within a block for a repeated treatment the same for all
treatments and blocks, should also provide quantities satisfying the assump-
tions underlying the analysis of variance. Since it is not quite clear how, in so far
as the transformation is satisfactory in the first way, it will necessarily be satis-
factory in the second, it will be well to consider directly the suitability of our
transformed values for the analysis of variance.

In the application of the analysis of variance one would deal with x,; rather
than with x;;; and suppose that

%y = A+ B;+C;+ Dy, (16)
where 4 is a contribution from the general level of population on the experi-
mental area, B; the contribution of the ith treatment and C; the contribution of
the jth block. The remainder term, D,;, is called the interaction of treatments and
blocks. Of course, the present discussion on the untransformed values, x;,
holds for the transformed values, xj; = }(xj; +2;;;) when the appropriate
symbols, A’, B;, C; and D;; are used.

In material satisfying the conditions underlying the analysis of variance, for
the observations under each treatment, the calculated squared standard devia-

tion is R 1 N )
8; = mjgl(xij._xi..) . (17)

Following the argument of the analysis of variance, x;; —x; , of which the mean
is 0, is an estimate of C;+ D,;, in which the two terms are independent; hence the

. 2 .
expectation of s is 0¥ = 0%, +0%,, (18)

where o; and o, are the standard deviations of the parameters, C; and D,
respectively, and are independent of treatment. Accordingly, s; should be in-
dependent of treatment and distributed as an estimate of o;, having N — 1 degrees
of freedom. Conversely, if x;; cannot be built of the independent terms of (16),
then the various values of s; will not be distributed as estimates of a single
standard deviation. The hypothesis that the values of s; in any one experiment
are estimates of one quantity may be tested.t

1 From correspondence with Dr R. W.B. Jackson, the writer has learned that he had arrived
independently at the same test.



256 Transformation of data from entomological field experiments

The results of the tests on the homogeneity of the values, s;, within the six
experiments treated in the present paper are presented in Table 10, where the
value of the L, criterion is shown for the original data and for the transformed
values together with the appropriate 0-05 and 0-01 levels of probability (Nayer,
1936). From Table 10 it can be seen that of the values of L, obtained from the
original data, all but one are near or beyond the 0-05 level of significance, but
that after transformation all are moved in to less significant values. Accordingly,
the values of s;, when calculated from the original data, appear heterogeneous but
the corresponding values obtained after the transformation appear homogeneous.
Thus it is more probable that the analysis of variance is applicable to the trans-
formed data than to the untransformed.

Table 10. The homogeneity, as measured by the criterion Ly, of the estimates
s; for various values of © before and after transformation

Experiment
1 2 3 4 5 6
L, before transformation 0-867 0-833 0-325 0-657 0-344 0-680
L, after transformation 0-864 0-941 0-766 0-688 0-813 0-730
19 limit 0-757 0-757 0-604 0-542 0-514 0-583
59, limit 0-812 0-812 0-707 0-656 0-648 0-673

In Table 10 we have tested the homogeneity of the estimates, s;, as in § 5 we
tested the homogeneity of s;;, that is without reference to the values of the
associated means. In view of our original assumptions we are, however, interested
in the possibility that the standard deviations, as calculated, might show every
sign of being estimates of a common standard deviation and yet be dependent
on the associated means. Accordingly, we have investigated such dependence
roughly by fitting by least squares a first order regression of s, on z; . From this
fitting we record the sign of the regression as follows:

Experiment
1 , 2 ’ 3 4 (l 5 6
Before transformation +* ! + ¥ +* +** ! + +
After transformation - : + | - —* } + +
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By a single asterisk we have indicated cases where the reduction in variability
effected by the regression passed the 59, probability limit and by a double
asterisk where it passed the 1 9, limit. Several points may be noted. (1) In two
cases (Experiments 2 and 6) after transformation the residual sum of squares
about the regression was greater than the reduction in squares due to the regres-
sion, whereas it was consistently less before transformation. (2) As can be seen
above, the regression generally did not effect a significant reduction in variability
after transformation but did before (the small number of degrees of freedom made
high significance difficult of attainment). (3) After transformation the sign of
the regression seemed to be a chance matter, whereas before transformation it
was consistently positive. These results suggest that the transformation pro-
posed did tend to make the variability within a given treatment independent of
the mean for that treatment.

7. THE EFFECT OF TRANSFORMATION UPON THE CONCLUSIONS
FROM THE ANALYSIS OF VARIANCE

It has been shown in §§ 5 and 6 that the analysis of variance can be made on
entomological data when a suitable transformation has been effected. It is of
practical interest to see what numerical effect such transformation will have upon
tests on the significance of, say, the effect of treatment and the significance of
differences for treatments.

First, consider the numerical results to be obtained from the analysis of
variance (1) without and (2) with transformation. Thus the mean square ascrib-
able to blocks, trgatments and their interaction is shown in Table 11, for six
experiments of which the data are given in § 2; parallel results are presented for
untransformed observations and for observations transformed by (10) with the
values of k from Table 9. To facilitate the comparison of the results, the mean
square for blocks and for treatments is expressed in terms of the estimate for
interaction, as the F' of Snedecor (1934), and presented in each case. The trans-
formation of the data has modified the conclusions to be drawn from the analysis
of variance in Table 11, in that there are considerable changes in the criterion, F,
for treatments or for blocks. In the examples shown the effect of treatments was
highly significant in all cases and so the changes introduced by transformation
did not alter the conclusions, as would have been the case for less definite effects.

Consider next the effect of transformation on the significance of differences
between the means for treatments as tested by the criterion, ¢, calculated with
such estimates of mean square as the interaction of Table 11. For illustration,
values of ¢, from the data on Leptinotarsa decemlineata (Experiment III), are
shown in Table 12 for each possible comparison of treaments when untransformed
data are used, when the transformation, (x + })t, as suggested by Bartlett (1936a)
is used, and when the transformation, k—*sinh-1 (kx)}, as suggested in the present
paper is used. In order that the influence of the level of population under each



Table 11. The analysis of variance of untransformed and
transformed data in six experiments

Untransformed data Transformed data
Degrees
Variation of
freedom Mean 7 Mean 7
square square

Experiment I. P. nubilalis

Between blocks 9 92-8 1-21 0-565 1-66

Between treatments 6 2,839-0 36-95 7-51 22-03

Interaction 54 76-8 — 0-341 e

Experiment II. P. nubilalis

Between blocks ! 9 577-0 6-72 5-37 10-55

Between treatments 6 1,721-0 20-04 8:69 17-07

Interaction 54 85-9 — 0-509 —
Experiment III. L. decemlineata

Between blocks 6 20,172-0 2-26 4-67 3-03

Between treatments 3 390,932-0 43-77 111-5 72-16

Interaction 18 8,931-0 —_ 1-54 -
Experiment IV. L. decemlineata

Between blocks 5 12,960-0 2-06 2:06 1-96

Between treatments 3 124,054-0 20-40 20-40 19-41

Interaction 15 6,727-0 —_ 1-05 ——

Experiment V. P. quinquemaculata

Between blocks 5 27-4 274 0-349 4-19

Between treatments 2 752-0 75-33 . 195 233-77

Interaction 10 9-98 — 0-083 —

Experiment VI. P. quinquemaculata

Between blocks 5 417 413 1-50 412
Between treatments 5 66-2 6:55 3-33 9-14
Interaction 25 10-1 — 0-365 —

Table 12. The values of t, in the comparison of means, as calculated from the
untransformed and the transformed data of Experiment I11 on Leptinotarsa
decemlineata

Comparison ungae;g;og;ed ¢ without ¢ from ¢ from
p data, transformation (x+3)} k~} sinh1 (kz)}

Ty~ 362 30 +9-27%% +11-33%+ + 9-92%*
zy 362 224 +3-84%% + 3524+ + 211*
2y 2, 33(2) 2;(& +9-§§:: +12:89%* +12«§6::
Ty %3, -5 — 7-81 - 781
gty 30 11 +0-54 + 156 + 2:54%
x5 224 11 +5-98%+ + 9:37*+ +10-35%*
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treatment may be judged, there are shown, also in Table 12, the means for the
untransformed data. The values of ¢ falling beyond the 0-01 level of significance
have been marked with two asterisks and the values beyond the 0-05 level with
one. It can be seen that the transformation resulted in a profound alteration in
the conclusions. Apparently on account of the dependence of variance on mean
in untransformed data, the pooled estimate of variance was originally too low
for the treatments which resulted in high populations and too high for the treat-
ments which resulted in low populations. Thus, in the comparison of the first
and third treatments, which appeared to have the two highest surviving popula-
tions, the value of ¢ calculated from untransformed values was high. In the other
extreme case, the comparison between the second and fourth treatments, the
value of ¢, as calculated from untransformed values was very low. It can be seen
further, that the first transformation only secured in part the modification in
the value of ¢ that was secured by the second transformation.

8. THE PROCEDURE OF TRANSFORMATION IN PRACTICE

The methods which were found applicable in the preceding discussion will
now be illustrated in the transformation of the data shown in Table 7 (Experiment
VII) on Phlegethontius quinquemaculata, of the same type as the experiments
previously discussed in the present paper. The steps in the analysis will be set out
with the purpose of providing a model for procedure in estimating the constant,
k, which will be used to effect a transformation of the data so that the analysis
of variance may be made.

Supposing that the experiment has been laid out with a repetition of each
treatment in each block, the procedure of estimating k makes it first necessary to
find the sum and the absolute difference of each pa.ir of plots subjected to a given

treatmentina glven plot and then to sum the sums, Z Z (@55, + 2, ;2) and the sums

squared, Z 2(:::,’,1+x,,2)2 and also the deferences squa.red Z 2(:%1 Z3j9)%
i=1j=1

over all such pairs and by substituting the results in (14) to ﬁnd k In the case

being used for an illustration the two plots subjected to the first treatment in

each block gave respectively 10 and 7, 20 and 14, 14 and 12, 10 and 23, 17 and 20,

14 and 13, so that

N
X (@1 +Ty50) = (104+7)+ (20 + 14) + (14 +12) +... = 174.
j=1
Similarly,
N
T (X1 + %)% = (104 7)2+ (20 4+ 14)2+ ... = 5308
j=1

and similarly,

N
3 (@4, — 1y0)? = (10— T)2+ (20— 14)2 4+ ... = 228.
j=1
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Of course, in estimating k& the summations are not limited to one treatment but
must be extended over all in the experiments. If this is done we find

n N n N n N
_l(xijl + ;) = 684, ‘ _Zl(xij1+xij2)2 = 19,656, 3 l(xijl_xiﬁ)? = 708.

t=1j

1=1j= t=1j=
. 2(708 — 684)
From (14) we estimate k=- 10.656
and referring to Table 8, p. 250, use k = 0-00 as the nearest value occurring there.
Of course, in this case, the transformation is simply .

Now from the above result it will be possible to replace the observed values of
Table 7 with the corresponding transformed values from the first column of
Table 8. Thus in Table 7 replace in the first row: 10, 20, 14, 10, 17 and 14, by
3-16, 4-47, 3-74, 3-16, 4-12 and 3-74. With such transformed values we can now
proceed to carry out a routine analysis of variance which will be facilitated by
working with the sum for each pair of plots in a given block with a given treatment.
For example, the final analysis of variance for Experiment VII would be carried
out with the values of Table 13.

= 0-:002,

Table 13. Transformed and summed values to be used in the analysis of
variance for Experiment VII on P. quinquemaculata

Block
Treatment
1 2 3 4 5 6
1 581 821 7-20 7-96 8:59 7-35
2 7-44 7-90 74 824 8:94 6-26
3 1-:00 4-06 273 2:41 173 3-:00
4 3-97 5-91 373 448 4-48 341
5 3-97 3-97 4-18 2:00 314 445
6 6-32 856 7-87 677 10-20 8-51

9. SUMMARY AND CONCLUSIONS

The foregoing work is a study of experimental results from seven field experi-
ments on the control of insects. In such data, the standard deviation of the
number of insects per plot varies with the mean. By the transformation,
x' = k~tsinh~! (kx)}, where k is a constant and x an observation, the data were
put in a form for which the standard deviation approached a constant independent
of the mean. The estimation of the one constant, k, necessary for the transforma-
tion was made possible by the design of the experiments with repetition of treat-
ments within blocks. In practice, the transformation gave good results so that
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analysis of variance could be made. From the analysis of the transformed data,
the results were found to differ markedly from those which would have been
obtained from the untransformed data.

ACKNOWLEDGEMENTS

The present work was suggested to the writer by Prof. E. S. Pearson to whom
the writer is further indebted for advice as the work progressed. The writer is
further beholden to Dr R.W.B. Jackson, to Dr B.L. Welch and to Dr M.S.
Bartlett for criticism and advice. Dr G.M. Stirrett and Mr F. A. Stinson very
kindly permitted the use of unpublished data from their experiments carried out
at Delhi, Ontario, on Phlegethontius quinquemaculata Haw.

APPENDIX

Ashas been said, the transformation of (10) was suggested by the method used
by Tippett (1934, p. 61). The procedure is as follows.

It is required to find 2’ = f(x), such that the standard deviation, o, of 2,
shall be approximately constant. Let us write

' = f(M)+f" (M) (x—M) +..., (19)
where M is the expectation of  and whence, approximately,
(@ —M") = f'(M) (x— M), (20)
where M’ is the expectation of 2. Hence
ol = {f'(M)}*o*, (21)

where o is the standard deviation of the observations, . Replacing o, in (21)
by a constant, c, as is the purpose of our operation, and substituting for o from
equation (6), p. 247, we have
(M) = c(M +kM?)-?, (22)

where k is, as has been previously discussed, a constant peculiar to our data.
Integrating in (22),

f(M) = 2ck—*sinh~ (EM)E. (23)
From (23) the form of the function suggested is sinh—* (kx)?, but it is wise instead
to use k—*sinh~1 (kz)?, since the transformation then becomes identical, as shown
in (11), with the established transformation, x*, when k = 0.

As Tippett (1934) says: ‘This derivation is not mathematically sound, and
the result is only justified if on application it is found to be satisfactory.” The
writer would have hesitated to have used it had it not already led to useful
transformations in cases analogous to the present, namely to #* where x comes
from a Poisson distribution, to sin—!p* where p comes from a binomial distribu-
tion and, according to Tippett, to tanh—1r, where r is the correlation coefficient.
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