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Transient precursor strategy in mineral formation of bone
Abstract

The strategy in biomineralization of initially depositing a less ordered mineral and then transforming it into a more crystalline mature phase is
probably widespread among invertebrates. The report in this issue by N.J. Crane, V. Popescu, M.D. Morris, P. Steenhuis, M.A. Ignelzi, Raman
spectroscopic evidence for octacalcium phosphate and other mineral species deposited during intramembraneous mineralization. Bone (In press),
using micro-Raman spectroscopy to study early mineral deposits in mice calvaria, provides strong evidence that the transient precursor strategy
also occurs in vertebrates.
© 2006 Elsevier Inc. All rights reserved.
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Precipitation in vitro often involves the initial formation of a
disordered more soluble phase that subsequently transforms
into a less soluble and usually more ordered form (Ostwald-
Lussac Law of Stages). If however a nucleation substrate is
present, the mature phase may be induced to form directly. As
most biological mineralization processes appear to control the
nucleation step, often resulting in the formation of oriented
crystals, it has been tacitly assumed that the nucleation process
is responsible for the formation of the first mineral phase. This
may not be the case. Studies of various invertebrate mineral-
ization processes show that biology may well be utilizing both
approaches to control mineral formation: the transient precursor
strategy as well as the nucleation strategy. The study by Crane et
al. [1] in this volume provides strong evidence that this may also
be the case in vertebrates.

The first unequivocal evidence for the presence of a transient
precursor mineral phase in biomineralization was presented by
Lowenstam and colleagues in their studies of the formation of
magnetite in the tooth of the chiton, a mollusk that lives in the
rocky intertidal zone ([2]; reviewed in [3]). They showed that
the first mineral formed is a poorly ordered hydrated iron oxide
phase called ferrihydrite, which after a few days transforms into
crystalline magnetite [2]. It was subsequently shown that the
other mineral phase in the chiton tooth, carbonated apatite (the
same mineral present in bone and teeth), also forms via a
precursor phase, in this case amorphous calcium phosphate
(ACP) [4].

In 1989, Lowenstam and Weiner [3] listed all the biological
mineralization processes they were aware of that involved a
precursor mineral phase. Among the 8 processes listed (Table
3.2) is the transformation of octacalcium phosphate (OCP) into
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carbonated apatite in bones and teeth, the one reported now by
Crane et al. [1]. A more detailed discussion of this phenomenon
by Lowenstam andWeiner elsewhere in the book (p.164) relates
to the large body of evidence amassed by the pioneer of this sub-
field, Walter Brown, in support of an OCP precursor phase [5].
As convincing as he was, he did not have the “smoking gun”
evidence now presented by Crane et al. [1]. The “hard” but
indirect evidence available at the time was an in vitro study by
Nelson et al. [6], who showed that the core of synthetic
carbonated apatite crystals contains an OCP-like phase. As this
so-called central dark line also exists in biological carbonate
apatites, it is reasonable to expect that they too form via an OCP
precursor phase. More observations of this nature have since
been reported. For example, Tohda et al. [7] reported the presence
of OCP in first-formed enamel crystals. X-ray diffraction studies
of the bones of human fetuses point to the presence of a calcium
deficient hydroxyapatite phase [8]. Fascinating high resolution
TEM images of the very early formed mineral deposits in
vertebrate tissues also provide evidence for the presence of
relatively disordered phases [9]. Studies of this type, however,
involve a lot of sample manipulation and usually dehydration,
leaving open the question of the nature of the early formed
mineral phase.

Detection of a transient mineral phase is very difficult.
Unless the biological process naturally separates the stages of
mineral formation (as is the case in the chiton teeth), it is a real
challenge to analyze the first-formed mineral deposits in a tissue
without altering them by for example, dehydration or
irradiation, and before they transform into a more mature
phase. In order to partially alleviate this problem, we studied
mineralization processes in various invertebrates that rapidly
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produce relatively large amounts of mineral more or less
synchronously, and used detection techniques that can be
readily applied and preferably do not involve dehydration. The
most useful in this regard is micro-Raman spectroscopy; the
technique used by Crane et al. [1]. The laser beam can be
focused through a microscope to an area of a few microns
diameter, and the sample can be wet. Furthermore, being a
spectroscopic technique, Raman is very sensitive to variations
in the atomic order of the phase being analyzed, including
disordered phases. Amorphous calcium carbonate has been
found to be the first-formed transient mineral phase in both
forming larval and adult echinoderm skeletons [10,11], larval
mollusk shells [12], crustacean cuticles [13] and is inferred to be
present in corals [14]. The mature mineral formed in these phyla
is either calcite or aragonite. With this broad taxonomic
distribution, it is reasonable to assume that the transient
precursor phase strategy is widespread.

Crane et al. [1] adopted a similar strategy. They used micro-
Raman spectroscopy to monitor mineral formation at the suture
boundaries of mice calvaria, and by adding FGF2 to themedium,
they induced rapid and somewhat synchronized mineralization.
The spectra obtained show the presence of OCP. This I regard as
“smoking gun” evidence that OCP is a precursor phase of
carbonated apatite. In fact, there is also an indication that
amorphous calcium phosphate (ACP) may form before the OCP.

The possibility that the transient mineral strategy is used by
vertebrates has been investigated since the 1960s. Termine and
Posner [15] proposed that ACP may be a precursor phase in
bone formation. In 1972, Fuhredi-Milhoffer et al. [16] showed
that in vitro the first-formed phase is ACP. This subsequently
transforms into OCP and finally into carbonate apatite.
Glimcher [17] reviewed the state of affairs in 1984 and
concluded that whereas there is no evidence that ACP is a
mature phase in bone, the possibility that it is a precursor phase
in bone formation has not been excluded. Is the report by Crane
et al. [1] the end of the story? Probably not. It certainly
represents a milestone achievement in what really is a very
tricky subject. Furthermore, the results need to be confirmed
independently and in other vertebrate mineralization processes.

In the better understood transient calcium carbonate forming
systems (reviewed in [18,19]) there is good reason to expect that
the transient mineral forming strategy is coupled to the
nucleation strategy; namely that the first-formed phase is
subsequently induced to crystallize from a nucleating substrate.
The first-formed amorphous calcium carbonate phases do not
diffract X-rays, but have been shown to have short range order
that in two cases resemble the structure of the mature phase
[20,21]. The biological system somehow imposes this order. It
also initially prevents the mineral from crystallizing in an
uncontrolled manner, and subsequently triggers its transforma-
tion into the mature phase. Clearly, there must be a complex
mechanism in place to perform all these tasks, including
apparently dedicated proteins [22] often pre-positioned in a 3-
dimensional framework. One possible advantage of using a
disordered phase initially is that its shape can be molded “at
will”; something that is difficult to do with the de novo growth of
crystals. Another advantage is that the amorphous mineral phase
is in essence a highly concentrated solution, and upon
crystallization, a lot less water needs to be removed from the
mineralization site [19]. If indeed ACP is the initial phase in
bone formation, it is perhaps at this stage that the mineral can be
introduced into the very small spaces (gaps) within the collagen
fibril.

Transient precursor mineral formation is clearly a funda-
mental issue to be understood in bone and tooth mineralization.
Walter Brown and colleagues [5] recognized this and Crane
et al. [1] have moved the field forward significantly. Much still
needs to be learned about the macromolecules that may well be
orchestrating the process, and whether or not the precursor
phases are structurally tailored as they are in invertebrates. With
this information in hand, the issue of whether or not some
pathologies can be ascribed to the malfunctioning of this
process, can also be addressed.
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