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Abstract

This communication summarizes viewpoints, discussion, perspectives, and questions, put forward at a workshop on “Growth
hormone and insulin-like growth factors in Wsh” held on September 7th, 2004, at the 5th International Symposium on Fish Endocri-
nology in Castellón, Spain.
  2005 Elsevier Inc. All rights reserved. 
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1. Growth hormone

Growth hormone (GH) is a pluripotent hormone pro-
duced by the pituitary gland in teleosts as in other verte-
brates. GH brings about its action by binding to a single
pass-transmembrane receptor, the GH receptor (GHR),
in target tissue. Ligand binding induces receptor dimer-
ization producing an active trimeric complex (for review,
see Pérez-Sánchez et al., 2002). GH has been sequenced
and/or the protein isolated from scores of teleosts, vari-
ous immunoassays established, and a number of GH-
transgenic Wsh strains established. Over the last two
decades, many aspects of GH physiology have been the
subject of intense research in Wsh such as the salmonids,
cyprinids, and sparids. In Wsh, GH participates in almost
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all major physiological processes in the body including
the regulation of ionic and osmotic balance, lipid, pro-
tein, and carbohydrate metabolism, skeletal and soft tis-
sue growth, reproduction and immune function. Recent
studies have indicated that GH aVects several aspects of
behaviour, including appetite, foraging behaviour,
aggression, and predator avoidance, which in turn has
ecological consequences (for reviews, see Björnsson,
1997; Björnsson et al., 2004; Pérez-Sanchez, 2000; Peter
and Marchant, 1995).

Despite the vast body of knowledge which exists doc-
umenting GH action in teleost Wsh, the mode of GH
action remains a major discussion topic (for review, see
Björnsson et al., 2004). Generalized claims have been
made that most/all GH eVects are indirect, based on an
outdated mammalian view where the pituitary/hepatic
GH/IGF-I system was seen as an “axis” with IGF-I
mediating the physiological action of GH (for review,
see Björnsson et al., 2004; Butler and Le Roith, 2001).
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The wide tissue distribution of IGF-I producing cells
(Reinecke et al., 1997) and IGF-I receptors (IGF-1R)
(Radaelli et al., 2003a), together with the extensive tissue
distribution of GH-receptors (Pérez-Sánchez et al., 2002)
makes it a truly challenging task to provide unequivocal
data on how GH mediates its actions at the cellular level.
In this context, the cloning of the teleostean GH-recep-
tors has been a major break-through. Since 2001 when
the GHR was Wrst cloned in goldWsh (Lee et al., 2001)
and turbot (Calduch-Giner et al., 2001), it has been
cloned in a rapidly growing number of teleost species, 15
at the latest count. This promises to accelerate research
into the mode of action of GH at the cellular level. Such
research into the temporal and spatial distribution of the
receptor, receptor sub-types and intracellular signaling
pathways will hopefully help explain how the pluripo-
tent actions of GH are mediated, but at the moment,
very little is known about the signaling mechanisms of
the various forms of Wsh GH-Rs. Further Welds of
research would include aspects such as hormone–recep-
tor interaction, receptor-mediated turn-over of the hor-
mone aVecting the GH clearance rate, as well as the
likely dual role of the receptor molecule to also act as a
GH-binding protein in plasma.

2. Insulin-like growth factor I

During the last decade, most studies of IGF-I in Wsh
have focused on identiWcation of the Wsh IGF, develop-
ing assays to measure blood or tissue levels of the IGF-I
peptide or mRNA, measuring changes in IGF-I in blood
and tissue IGF-I expression in response to varying nutri-
tional conditions and season, and assessing control of
IGF-I production by growth hormone (see above) and
other endocrine factors, such thyroid hormone (Schmid
et al., 2003) or estrogen (Riley et al., 2004). Results of
these studies have shown that IGF-I structure, regula-
tion, and function appear similar in Wsh and mammals
(for review, see: Reinecke and Collet, 1998). In many Wsh
species, blood levels of IGF-I or tissue levels of its
mRNA positively correlate with dietary ration, dietary
protein content, and body growth rate (Beckman et al.,
2004; Duan, 1998; Pérez-Sánchez et al., 1995). IGF-I
increases in blood during the growing season in temper-
ate Wshes showing seasonal growth (Mingarro et al.,
2002), and is stimulated by increased temperature (Beck-
man et al., 1998) and day length (McCormick et al.,
2000). Furthermore, treatment of Wsh with IGF-I
implants stimulates growth (McCormick et al., 1992).
IGF-I in Wsh has been associated not only with growth,
but also with metabolism (Castillo et al., 2004), develop-
ment (Greene and Chen, 1999b; Pozios et al., 2001),
reproduction (Maestro et al., 1997; Weber and Sullivan,
2000), and osmoregulation in seawater (McCormick,
2001). IGF-I exerts its eVects on cells through binding to
the IGF-I receptor (IGF-1R), which binds IGF-II in a
similar manner in zebraWsh (Mendez et al., 2001; Pozios
et al., 2001) but not so well in rainbow trout (Loir and Le
Gac, 1994).

The wide range of tissue distribution of the IGF-I
hormone and the IGF-1R in Wsh, coupled with the var-
ied functions associated with IGF-I, make Wsh attractive
subjects for future study. Unique functions of IGF-I in
Wsh, such as its role in osmoregulation, raise intriguing
questions regarding its action on gills and whether intra-
cellular signaling pathways resemble those involved in
mitogenesis. Does IGF-I have an osmoregulatory role in
all Wsh species, or only anadromous or euryhaline spe-
cies? The relative importance of local vs systemic pro-
duction of IGF-I, still controversial in mammalian
endocrinology, has not been directly addressed in Wsh
species.

Interestingly, Wsh muscle has a substantially greater
abundance of IGF-1R than insulin receptors (IR) (Parri-
zas et al., 1995). This indicates that IGF-I contributes
more to the regulation of muscle function than insulin in
trout, in contrast to the situation in mammals. Both
zebraWsh and salmonid Wsh have at least two forms of
the IGF-I receptor: IGF-1Ra and IGF-1Rb (e.g., Chan
et al., 1997; Greene and Chen, 1999a). During zebraWsh
development, the levels of IGF-1Ra and IGF-1Rb show
diVerent patterns of expression (Maures et al., 2002).
Furthermore, IGF-1R increases with diVerentiation of
cultured trout muscle cells (Castillo et al., 2002). Fasting
of trout increases IGF-1Ra, and refeeding causes a
decline in IGF-1Ra, but no change in IGF-1Rb (Chauv-
igne et al., 2003). In addition to nutrition, environmental
factors as temperature aVect tissue IGF-1R (Gabillard
et al., 2003). More work on IGF receptor regulation in
other Wsh species is needed. What neuroendocrine fac-
tors are responsible for the environmental regulation of
the IGF-1R? An interesting, yet unresolved, question is
whether multiple forms of IGF-1R in salmonids and
zebraWsh are associated with diVerent functions. Are
multiple isoforms of the IGF-1R a primitive vertebrate
condition, or are they associated with the genome dupli-
cation that has apparently occurred during early teleost
evolution?

A critical element in studies of speciWc actions of IGF
and their receptors is the role of IGF binding proteins
(IGFBP). The zebraWsh genome contains sequences
homologous to human IGFBP-1 (Maures and Duan,
2002), IGFBP-2 (Duan et al., 1999), IGFBP-3 (Chen
et al., 2004), and IGFBP-5 (Ding, J., Duan, C., unpub-
lished, GenBank Accession #AY100478), and studies of
various Wsh species have shown IFGFBP levels in blood
Xuctuate in anabolic and catabolic states (for review, see
Kelley et al., 2001). It is well known in mammals that
IGFBPs inXuence IGF function by targeting IGF deliv-
ery to speciWc tissues and enhancing or inhibiting IGF
eVects. Although over 99% of total circulating IGF-I are
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bound to IGFBPs in salmonids (Shimizu et al., 1999), lit-
tle work has been done on how IGFBPs regulate IGF
function in Wsh. At present, we don’t know whether
IGFBPs exert any direct eVects on cells, as the mamma-
lian IGFBPs 3 and 5 probably do? Recent work by Duan
and colleagues (unpublished) have shown that IGFBP
knockdown in zebraWsh has profound eVects on develop-
ment. More work on the role of Wsh IGFBPs is crucial to
a full understanding of IGF function in speciWc tissues.

In summary, IGF-I function in Wsh is controlled vari-
ously by regulation of IGF-I production, IGF receptor
function, signaling pathways and cross-talk, and modula-
tion by systemic and local production of IGFBPs. A full
understanding of IGF-I function in Wsh requires more
work in all of these areas, in a variety of physiological
processes, such as growth, metabolism, reproduction,
osmoregulation, and in Wsh species with various life his-
tory and ecological types. The diversity of Wsh species
and habitats, their ancient phylogeny, and their economic
and cultural importance will undoubtedly make them
useful targets for further exploration of IGF function.

3. Insulin-like growth factor II

In bony Wsh, not only IGF-I mRNA, but also IGF-II
mRNA have been detected both in liver and in numer-
ous other organs, such as brain, eye, gills, heart, gastro-
intestinal tract, pancreatic islets, kidney, skeletal muscle,
spleen, and male and female gonads (e.g., Ayson et al.,
2002; Caelers et al., 2004; Vong et al., 2003). The wide-
spread presence of the IGF-II gene in both juvenile and
adult Wsh as shown by RT-PCR contrasts the situation
in mammals (for review, see Reinecke and Collet, 1998).
Unfortunately, in contrast to IGF-I the precise localiza-
tion of the IGF-II peptide and/or mRNA in extrahepatic
sites has been analyzed only in few studies (Caelers et al.,
2003; Radaelli et al., 2003b; Schmid et al., 1999). Knowl-
edge on the cellular production sites of a hormone, how-
ever, gives Wrst hints to its potential functions. Thus, we
need more information about the organ-speciWc cells
which synthesize IGF-II.

Previously, the IGF type 2 receptor was found only in
mammals and it was generally believed to be absent
from non-mammalian vertebrates (for review, see Rei-
necke and Collet, 1998). The presence of an IGF type 2
receptor has been indicated for trout larvae at Wve weeks
postfertilization (Mendez et al., 2001). However, further
research on the role of this molecule in Wsh larvae and
adults is needed. As a Wrst step, attempts must be taken
to clone the IGF-II receptor.

It has been shown that IGF-II regulates metabolism
in trout muscle cells (Codina et al., 2004), indicating that
IGF-II, like IGF-I, could act not only as a growth factor
but also as a metabolic hormone. Although preliminary
evidence indicates that IGF-II and IGF-I potently
activate cell proliferation and DNA synthesis in
zebraWsh embryonic cells via mitogen-activated protein
kinase (MAPK) and phosphatidylinositol 3-kinase (PI3
kinase) (Pozios et al., 2001) we are far from understand-
ing the intracellular signaling pathways by which the
IGFs exert their eVects on the diVerent target cells, and
future research should develop this interesting Weld.

As outlined above, to date four diVerent Wsh IGFBPs
have been cloned, sequenced and shown to be well con-
served with their mammalian counterparts. A peculiar
mammalian IGFBP is IGFBP-6 that in contrast to the
other IGFBPs has a markedly higher aYnity for IGF-II
than for IGF-I and likely serves as potent inhibitor of
IGF-II actions (Headley et al., 2004). However, whether
a Wsh analogon to IGFBP-6 is present also in Wsh is a
matter of future research.

There is evidence that in bony Wsh both the IGF-I
gene and IGF-II gene are controlled by GH (Shamblott
et al., 1995; Tse et al., 2002; Vong et al., 2003) in all
organs. This makes bony Wsh quite unique because in
other vertebrate classes, GH most likely regulates only
the expression of the IGF-I gene (for review, see Rei-
necke and Collet, 1998). Whether the above results indi-
cate a particular impact of IGF-II in Wsh remains to be
clariWed. Thus, an important topic to deal with in future
is the determination of IGF-II plasma levels in diVerent
Wsh species, as has recently been done in Atlantic salmon
and rainbow trout (Gentil et al., 1996; Wilkinson et al.,
2004). Subsequently, the potential changes in circulating
IGF-II during development or under diVerent physio-
logical conditions, including nutritional status, smoltiW-
cation, and temperature, and varying GH levels should
be investigated and correlated to alterations in the
expression of the IGF-II gene. Otherwise, the “hor-
mone” IGF-II may be left as enigmatic as it has been
since its detection some 30 years ago.
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