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In vitro studies reveal that nuclear receptor coactivators
enhance the transcriptional activity of steroid receptors,
including estrogen (ER) and progestin receptors (PR),
through ligand-dependent interactions. Whereas work from
our laboratory and others shows that steroid receptor co-
activator-1 (SRC-1) is essential for efficient ER and PR ac-
tion in brain, very little is known about receptor-coactiva-
tor interactions in brain. In the present studies, pull-down
assays were used to test the hypotheses that SRC-1 from
hypothalamic and hippocampal tissue physically associate
with recombinant PR or ER in a ligand-dependent manner.
SRC-1, from hypothalamus or hippocampus, interacted
with PR-A and PR-B in the presence of an agonist, but not
in the absence of ligand or in the presence of a selective
PR modulator, RU486. Interestingly, SRC-1 from brain as-
sociated more with PR-B, the stronger transcriptional ac-

tivator, than with PR-A. In addition, SRC-1 from brain,
which was confirmed by mass spectrometry, interacted
with ER� and ER� in the presence of agonist but not when
unliganded or in the presence of the selective ER modula-
tor, tamoxifen. Furthermore, SRC-1 from hypothalamus,
but not hippocampus, interacted more with ER� than ER�,
suggesting distinct expression patterns of other cofactors
in these brain regions. These findings suggest that interac-
tions of SRC-1 from brain with PR and ER are dependent on
ligand, receptor subtype, and brain region to manifest the
pleiotropic functional consequences that underlie steroid-
regulated behaviors. The present findings reveal distinct
contrasts with previous cell culture studies and emphasize
the importance of studying receptor-coactivator interac-
tions using biologically relevant tissue. (Endocrinology 149:
5272–5279, 2008)

THE STEROID HORMONES, estradiol and progesterone,
exert many of their effects on reproductive behavior

and physiology by binding to their respective intracellular
receptors in specific brain regions (1–3). Intracellular estro-
gen receptors (ER) exist in two forms, ER� and ER�, which
are transcribed from different genes (4–6). These subtypes
differ in their functions (7), abilities to bind different ligands
(8–11), and distribution in brain (12–16). In addition, cell
culture experiments indicate that ER� is a stronger tran-
scriptional activator than ER� due to differences in the ac-
tivation function (AF)-1 region of the amino terminus (17). In
most species, progestin receptors (PR) are expressed in two
forms; the full-length PR-B and the truncated PR-A, which
are encoded by the same gene but are under the regulation
of different promoters (18, 19). In vitro studies indicate that
human PR-B is a stronger transcriptional activator than
PR-A (20 –24), due to an additional AF domain in the N
terminus of PR-B (25, 26). These two PR isoforms appear

to have distinct functions in reproductive behavior and
physiology (27–30).

Nuclear receptor coactivators dramatically enhance the
transcriptional activity of steroid receptors in vitro, including
ER and PR (31–33). In addition to early models of nuclear
receptor coactivators functioning as a bridge between recep-
tors and the general transcriptional machinery, nuclear re-
ceptor coactivators are thought to contribute to nuclear re-
ceptor transcription through a variety of processes, including
phosphorylation, methylation, acetylation, and chromatin
remodeling (32, 34–36). The first steroid receptor coactivator
to be cloned was steroid receptor coactivator (SRC)-1 [also
known as nuclear receptor coactivator (NCoA)-1] (33), which
was later found to be a member of a larger family of p160
proteins that includes SRC-2 (glucocorticoid receptor-inter-
acting protein, transcription intermediary factor, and
NCoA-2) (37) and SRC-3 (amplified in breast cancer 1,
TRAM-1, p/CIP, activator of thyroid and retinoic acid re-
ceptor, and RAC3) (38). Under most conditions, the p160
family and other coactivators physically interact with steroid
receptors, including ER and PR, in the presence of an agonist,
but not in the absence of ligand or the presence of an an-
tagonist or selective receptor modulators (33, 39–44) (but cf.
Refs. 45, 46). It is well established that selective estrogen
receptor modulators (SERMs) regulate ER activity in a tissue-
specific manner (47). For example, tamoxifen can block ER
action through competitive binding or can activate ER, de-
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pending on the cellular environment, including the ratio of
coactivators and corepressors (48). Using this same rationale,
it has been suggested that RU486 is a selective PR modulator
(SPRM) (49, 50).

A variety of studies have begun to investigate nuclear re-
ceptor coactivator function in hormone action in brain. SRC-1
mRNA and protein are expressed at high levels in the rodent
hypothalamus, hippocampus, cerebellum, paraventricular
nucleus, thalamus, and amygdala (51–57) (for review see Ref.
58). Moreover, recent work revealed that hypothalamic neurons
coexpress ovarian steroid receptors (ER and PR) and SRC-1 (59).
In addition, we and others have found that SRC-1 is important
for ER and PR action in brain, including regulation of ER tran-
scriptional activity (55, 60), hormone-dependent sexual differ-
entiation of the brain (61), and sexual behavior (55, 60–64).
Finally, the p160 coactivators appear to function in glucocor-
ticoid receptor action in glial cells (65).

Whereas cell culture studies indicate that receptor-coac-
tivator interactions occur in a ligand-dependent manner, it is
not known whether coactivators from brain physically as-
sociate with receptors. Therefore, we tested the hypothesis
that SRC-1, from brain regions rich in steroid receptors, phys-
ically associates with steroid receptors in a ligand-dependent
manner. To test this hypothesis, we developed pull-down
assays using recombinant PR and ER subtypes and SRC-1
from female rat hypothalamus and hippocampus. The
present findings are in contrast with those of previous cell
culture receptor-coactivator interaction studies and reveal
the importance of investigating these interactions using bi-
ologically relevant brain tissue. In addition, such studies may
lead to the discovery of new cofactors that modulate steroid
receptor action in brain.

Materials and Methods
Experimental animals

Adult female (175–200 g) Sprague Dawley rats from Charles River
Breeding Laboratories, Inc. (Wilmington, MA) were housed singly in a
14-h light, 10-h dark cycle, with lights off at 1100 h. Animals were given
food and water ad libitum. Female rats were anesthetized with ketamine/
xylazine cocktail (100 mg ketamine and 18 mg xylazine per 0.75 ml/kg
in saline) and ovariectomized. A 1-wk recovery period followed to allow
clearing of endogenous hormones. All animals were overdosed with
sodium pentobarbitol (89 mg/kg) and chloral hydrate (425 mg/kg) and
then decapitated. Hypothalamic and hippocampal (containing a small
portion of the cortex dorsal to the Hipp) tissues were dissected out and
flash frozen on dry ice. Tissue was then stored at �80 C. All animal
procedures were approved by the Institutional Animal Care and Use
Committees of Skidmore College and Wellesley College.

Recombinant glutathione-S-transferase (GST)- and
Flag-tagged steroid receptors

Recombinant ER and PR fusion proteins were expressed in Spodoptera
frugiperda (Sf9) insect cells by the Tissue Culture CORE Facility of the
University of Colorado Cancer Center and the Baculovirus/Monoclonal
Antibody Facility of the Baylor College of Medicine as described pre-
viously (66, 67). Briefly, full-length human PR-A or PR-B was fused to
a GST tag. Insect cell cultures for PR-GST (viruses kindly provided by
David Bain, University of Colorado Health Science Center) were incu-
bated with 200 nm of the PR agonist R5020, 200 nm of the SPRM RU486,
or in the absence of PR ligand. Full-length human ER� or ER� was fused
to a Flag tag (viruses kindly provided by Lee Kraus, Cornell University,
Ithaca, NY) (67, 68). Sf9 cell cultures for ER-Flag were incubated with 200
nm estradiol, 200 nm 4-hydroxytamoxifen, or no ligand.

Tissue preparation

Brain tissue from female rats (n � 54) was pooled in groups of three
for each sample and homogenized in buffer [10 mm Tris, 10% glycerol,
400 mm NaCl, 1 mm DTT, 1 mm EDTA (pH 7.4)] with protease inhibitors
(1:10 dilution, P2714; Sigma, St. Louis, MO). Samples were incubated on
ice for 30 min and then centrifuged for 30 min at 4 C at 12,000 rpm, and
supernatants were aliquoted and frozen at �80 C.

PR GST pull-down assay procedure

All procedures were carried out at 4 C. Twenty-five microliters of
glutathione Sepharose 4B packed resins (Amersham Biosciences, Upp-
sala, Sweden) were added to siliconized centrifuged tubes and washed
with TG buffer [20 mm Tris-HCl (pH 8.0), plus 10% glycerol] containing
100 mm NaCl (TG � NaCl). The resin was then pretreated with ovalbu-
min (1 mg/ml; Fisher Scientific, Hampton, NH) for 15 min on an end-
over-end rotator. After three rinses with TG � NaCl, equal amounts of
recombinant human PR-GST in 100 mm salt were added to resins and
incubated on a rotator for 1 h. The resins were washed with TG � NaCl.
Equal amounts of pooled hypothalamic or hippocampal whole-cell ex-
tracts were added to the immobilized PR-GST, or GST alone as a control,
and incubated on a rotator for 1 h. Resins were washed with TG � NaCl
to eliminate nonspecific binding, and then samples were eluted with 2%
sodium dodecyl sulfate sample buffer by boiling samples for 5 min and
stored at �80 C until use.

Samples were analyzed by Western blot as described previously (62)
for detection of SRC-1 interactions with PR. Briefly, SRC-1 from brain
was probed for using a mouse monoclonal antibody generated against
amino acids 477–947 of human SRC-1 (1135-H4, 0.5 �g/ml, kindly pro-
vided by Dean Edwards, Bert O’Malley, Ming Tsai, and Sergio Oñate,
Baylor College of Medicine, Houston, TX) (43) or a rabbit polyclonal
antibody generated against aa 350–690 of mouse SRC-1 (M-341, 1:750;
Santa Cruz Biotechnology, Santa Cruz, CA). Membranes were incubated
in a sheep antimouse secondary (1:6000; Amersham) or a donkey an-
tirabbit secondary (1:10,000; Amersham) antibody. Immunoreactive
bands were detected with an enhanced chemiluminescence kit (New
England Biolabs, Beverly, MA) and membranes exposed to film (Blue
Sensitive x-ray film; Laboratory Products Sales, Rochester, NY). Mem-
branes were stripped for 3 h at 70 C in stripping buffer [2% sodium laurel
sulfate, 62.5 mm Tris-HCl, 100 mm 2-mercaptoethanol, H2O (pH 6.7)]
and then reprobed for PR using a mouse monoclonal antibody that
recognizes N-terminal amino acids 165–534 of both PR-A and PR-B (PR
1294, 0.1 �g/ml, kindly provided by Dean Edwards). Films were placed
on a light box (Fotodyne, New Berlin, WI) and photographed with an
Olympus Camedia digital camera (Melville, NY). Images were imported
into the NIH Image analysis program (version 1.62, National Institutes of
Health, Bethesda, MD) on a Power Macintosh G3 computer (Cupertino,
CA) and analyzed for immunoreactive band area as measured by number
of pixels, which has been found to be consistent with OD data (62).

ER Flag-tagged pull-down assay procedure

All steps were conducted at 4 C. Twenty-five microliters of packed
anti-Flag M2 affinity gel resin (Sigma) was added to each siliconized
centrifuge tube and prewashed three times with Tris-buffered saline and
two times with 100 mm glycine HCl [100 mm glycine, water (pH 3.5)].
Resins were next washed three times with wash buffer � NaCl [50 mm
Tris-HCl, 100 mm NaCl, 1% glycerol, 50 mm Na fluoride, water (pH �
7.4)] � 0.1% Triton X-100. Equal amounts of recombinant Flag-tagged ER
were added to the resin column and rotated on an end-over-end rotator
for 1 h. The resins with immobilized ER were washed three times with
wash buffer � NaCl. Equal amounts of pooled hypothalamic, or hip-
pocampal, whole-cell extracts were added to the immobilized ER-Flag
and incubated on a rotator for 1 h. The resins were washed three times
with wash buffer � NaCl to eliminate nonspecific binding, and then
samples were eluted with 2% sodium dodecyl sulfate sample buffer as
described above and stored at �80 C.

Samples were analyzed by Western blot, as described above, for
detection of SRC-1 interactions with ER. After probing for SRC-1,
membranes were stripped and reprobed for Flag-tagged ER� and
ER� using a mouse monoclonal antibody generated against the Flag
tag (0.25 �g/ml, anti-Flag M2; Sigma) and a horseradish peroxidase-
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linked sheep antimouse secondary antibody (1:80,000 dilution; Am-
ersham Biosciences).

Mass spectrometry

Rat hypothalamic extracts (approximately 40 mg of tissue per con-
dition) were exposed to immobilized ER� in the presence of 200 nm
estradiol or no ligand. Eluted samples were resolved in adjacent lanes
by SDS-PAGE, and the region of the gel corresponding to SRC-1 was
excised, digested with trypsin, and desalted as described previously (69,
70). The peptide mixture was injected onto a C18 trap and then separated
on a reversed phase nano-HPLC column (PicoFrrtTM, 75 �m �10 cm;
tip inner diameter 15 �m) with a linear gradient of 0–50% mobile phase
B (0.1% formic acid-90% acetonitrile) in mobile phase A (0.1% formic
acid) over 120 min at 200 nl/min. Liquid chromatography and tandem
mass spectrometry experiments were performed with an LTQ linear ion
trap mass spectrometer (ThermoFinnigan, San Jose, CA) equipped with
a nanospray source; the mass spectrometer was coupled on-line to a
ProteomX nano-HPLC system (ThermoFinnigan). The mass spectrom-
eter was operated in the data-dependent mode using Xcalibur software.
The most intense seven ions in each MS survey scan were automatically
selected for tandem mass spectrometry. This approach allows the de-
tection of individual proteins in the nanogram range and has been used
to identify proteins in complexes using immunoaffinity purification as
well as low abundance transcription factors such as RelA/p65 nuclear
factor-�B (69, 70). The acquired tandem mass spectrometry spectra were
searched with SEQUEST algorithm from the SWISSPROT Protein Da-
tabase on the Bioworks 3.2 platform (ThermoFinnigan).

Statistical analysis

Films from Western blots were analyzed as described previously (62).
Data were analyzed as a ratio of area of SRC-1 immunoreactive band to
area of PR-A or PR-B band, or area of ER� or ER� band. Unless stated
otherwise, the area of immunoreactive bands was analyzed using a
two-way ANOVA in StatView version 5.0.1 (SAS Institute Inc., Cary,
NC) to determine differences between receptor subtypes and ligand
conditions. Differences were considered significant at a probability of
less than 0.05.

Results
PR interacts with neural SRC-1 in a ligand-dependent and
subtype-specific manner

GST pull-down assays were used to investigate whether
SRC-1 from brain physically associates with PR-A and PR-B

and whether these interactions depend on the ligand con-
dition. SRC-1 from the hippocampus interacted with PR-A in
the presence of the agonist R5020 (Fig. 1, lane 2) but not in
the absence of ligand (Fig. 1, lane 3). SRC-1 did not interact
with the GST tag bound to resin (Fig. 1, lane 4) or the resin
alone (lane 5), indicating that there was no nonspecific bind-
ing of SRC-1 to the GST tag or resin alone.

SRC-1 from brain associated with both PR-A and PR-B
when bound to agonist (Figs. 2, lanes 2 and 5, and 3). In
dramatic contrast, little to no SRC-1 from the hippocampus
(Fig. 2, lanes 4 and 7) or hypothalamus associated with PR-A
and PR-B in the absence of ligand or in the presence of the
SPRM RU486 [F(5, 32) � 17.08, P �0.0001; Fig. 3, A and B].
In confirmation of these results using the 1135-H4 monoclo-
nal antibody to human SRC-1, similar findings were ob-
served using the rabbit polyclonal antibody to mouse SRC-1
(data not shown). These findings indicate that SRC-1 from
brain interacts with PR in a ligand-dependent manner. Fig-
ure 2 reveals lower molecular weight bands labeled with the
SRC-1 monoclonal antibody that appear to interact with
PR-A and PR-B in a manner that is not dependent on the
ligand condition because they are present in all three ligand
conditions. However, these same immunoreactive bands
were observed using the polyclonal SRC-1 antibody (data not
shown), suggesting that these bands are fragments of SRC-1
from brain.

Initial findings suggested that SRC-1 associated more
strongly with PR-B than PR-A in the presence of agonist (Fig.
2, lanes 2 and 5). Indeed, SRC-1 from hippocampus (Fig. 3A)
and hypothalamus (Fig. 3B) interacted more with PR-B than
with PR-A in the presence of agonist [F(5, 32) � 11.75, P
�0.0001].

ER associates with SRC-1 from the hypothalamus in a
receptor subtype-specific manner

Flag-tagged pull-down assays were used to investigate
whether ER� and ER� physically associate with SRC-1 from
brain and whether these interactions occur in a ligand-de-
pendent manner. Hypothalamic SRC-1 interacted with ER in
a ligand-dependent manner (Figs. 4 and 5B). Estradiol pro-
moted the interactions of hypothalamic SRC-1 with ER� and
ER� (Figs. 4, lanes 2 and 5, and 5B). In contrast, in the absence
of ligand or the presence of the SERM, tamoxifen, ER� and
ER� had little to no association with hypothalamic SRC-1
[F(5, 18) � 28.86, P �0.0001; Fig. 4, lanes 3 and 6 and 4 and
7, and Fig. 5B]. SRC-1 from the hippocampus interacted
strongly with both hippocampal ER� and ER� in the pres-
ence of estradiol (Fig. 5A). In the absence of ligand or the
presence of the SERM, tamoxifen [F(5, 24) � 22.10, P �
0.0001], there was little interaction between hippocampal
SRC-1 with either ER� or ER� (Fig. 5A). Similar SRC-1 and
ER interactions were observed using the polyclonal antibody
to SRC-1 (data not shown).

Interestingly, SRC-1 from the hypothalamus physically
associated more with ER� than with ER� in the presence of
estradiol (Figs. 4, lanes 2 and 5, and Fig. 5B). In contrast, we
did not observe this differential interaction between SRC-1
from the hippocampus and ER� (0.42 � 0.07) and ER� (0.32 �
0.04; P � 0.24, two-tailed t test) (Fig. 5A). Taken together,

FIG. 1. SRC-1 from hippocampal whole-cell extracts associates with
PR-A in a ligand-dependent manner. SRC-1 from hippocampal whole-
cell extracts (WCE) associates with PR-A in the presence of the ag-
onist R5020 (lane 2) but not the absence of ligand (lane 3). SRC-1 does
not interact with GST tag alone (lane 4) or with the glutathione resin
(lane 5). Input (1% of total) of SRC-1 from hippocampal extract is
shown in lane 1.
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these data suggest that that ER subtypes interact with SRC-1
in a brain region-specific manner.

Mass spectrometry confirms hypothalamic SRC-1 interacts
with ER�

To independently confirm the Western blot data for es-
tradiol-dependent binding of ER to SRC-1 from rat brain, we
used an unbiased mass spectrometry approach. Rat hypo-
thalamic extracts were exposed to immobilized ER� in the
presence of estradiol or no ligand, and eluted samples were
resolved by SDS-PAGE. Gel slices corresponding to the pu-
tative SRC-1 region of the two lanes were digested with
trypsin and peptides analyzed by liquid chromatography
and tandem mass spectrometry. Database searching identi-
fied an abundant, doubly charged peptide with MH� of
1336.65907. Whereas no matches were found in the rat
SwissProt database, a search of the far more completely an-
notated human database matched the amino acid sequence

SDISSSSQGVIEK with highly significant scores of XCorr �
3.62 and DeltaCn � 0.45. Furthermore, 18 of 24 of the ob-
served fragment ions matched the predicted fragment ions.
This peptide corresponds to amino acids 97–109 of the hu-
man nuclear receptor coactivator 1 (EC 2.3.1.48) with gene
name of NCoA-1 (SRC-1) and SwissProt accession no.
Q15788. It is important to note a match in the rat database was
not found because, despite 100% identity of this human pep-
tide with mouse, chicken, pig, and many other species, the
rat NCoA-1 sequence is not currently in the SwissProt da-
tabase. Interestingly, this peptide was found in the slice from
the lane eluted from estradiol-bound ER� and not in the slice
eluted from unliganded ER�, confirming our findings from
the Western blot analysis.

Discussion

To test the hypotheses that SRC-1 from brain physically
associates with PR and ER subtypes in a ligand-dependent

FIG. 2. SRC-1 from hippocampal whole-cell extracts associ-
ates with PR-A and PR-B in a ligand-dependent manner.
SRC-1 from the hippocampus associates with PR-A and PR-B
in the presence of the agonist R5020 (lanes 2 and 5) but not
the absence of ligand (lanes 3 and 6) or in the presence of the
SPRM, RU486 (lanes 4 and 7). Input (1% of total) of SRC-1
from hippocampal extract is shown in lane 1.

FIG. 3. SRC-1 from the hippocampus
and hypothalamus associates with PR in
a ligand-dependent and receptor sub-
type-specific manner. A, SRC-1 from hip-
pocampal extracts interacted with both
PR-A and PR-B in the presence of R5020
but not the absence of ligand or the pres-
ence of RU486. *, P � 0.0001, signifi-
cantly different from PR-A � R5020; #,
P � 0.01, significantly different from
PR-B � R5020, and SRC-1 from hip-
pocampus interacted more with PR-B
than PR-A when bound to R5020. **, P �
0.05, t test. B, Hypothalamic SRC-1 in-
teracts with PR-A and PR-B when bound
to R5020, but little to no interactions
were detected in the absence of ligand or
when receptors were bound to RU486, *,
P � 0.01, significantly different from
PR-A � R5020; #, P � 0.001, signifi-
cantly different from PR-B � R5020, and
SRC-1 from the hypothalamus inter-
acted more with PR-B, than PR-A when
bound to R5020; **, P � 0.05, t test, n �
5–7 per treatment group.
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manner, we developed pull-down assays with brain tissue
from female rats. We found that SRC-1 from hypothalamic
or hippocampal extracts interacted with both GST-tagged
PR-A and PR-B when bound to the agonist R5020. In con-
trast, very little to no SRC-1 from brain associated with
PR-A or PR-B in the absence of ligand or the presence of
the SPRM, RU486. These findings are consistent with pre-
vious studies using recombinant SRC-1 and the concept
that SRC-1 and PR interactions are agonist dependent (33,
71). The present findings support our previous work in-
dicating a role for SRC-1 action in the hypothalamus in
PR-dependent female sexual behavior (62) and suggest
that SRC-1 may contribute to the effects of progestins on
memory in the hippocampus (72).

Interestingly, we found that SRC-1 from hypothalamus or
hippocampus interacts more with PR-B than with PR-A in
the presence of agonist (Fig. 3). The present results are in
contrast to other pull-down assays using recombinant SRC-1.
In one study, full-length recombinant SRC-1 interacted
equally with PR-A and PR-B when bound to agonist (43). In
another pull-down study, an SRC-1 fragment interacted with
PR-B but not PR-A (71). Taken together, the present findings
suggest the importance of using biologically relevant tissue,
in contrast to the use of cell lines alone, in these pull-down
assays. It may be that other cofactors and proteins, that are
present in brain, are important for appropriate SRC-1 and PR
interactions.

In vitro studies indicate that human PR-B is a stronger
transcriptional activator than PR-A (20, 22–24) due to the
additional AF-3 region of PR-B (25, 26). It is likely that this
additional AF domain in PR-B allows for enhanced recruit-
ment of coactivators, thus augmenting the transcriptional
activity of PR-B (24, 25, 73). Interestingly, a recent study
indicated that both PR isoforms are required for the complete
expression of female sexual behavior in mice (27). Whereas
it is not known whether PR-B is a stronger transcriptional
activator than PR-A in brain, our findings suggest that PR-B
is a stronger activator of SRC-1-dependent progesterone sig-
naling pathways in brain than PR-A.

SRC-1 from hypothalamus or hippocampus interacted
with ER� and ER� when bound to estradiol (Figs. 4 and 5).
In contrast, very little to no association of SRC-1 from brain
was detected with ER� or ER� in the absence of ligand or the
presence of the SERM, tamoxifen (Figs. 4 and 5). Our findings
are consistent with a variety of studies using cell lines dem-
onstrating that estradiol facilitates the association of SRC-1
with ER, whereas antagonists prevent this association (40, 48,
74, 75). In contrast to the present findings, under certain

FIG. 4. SRC-1 from hypothalamic whole-cell extracts associates with
ER� and ER� in a ligand-dependent manner. SRC-1 from the hypo-
thalamus associates with ER� and ER� in the presence of estradiol
(lanes 2 and 5) but not the absence of ligand (lanes 3 and 6) or in the
presence of the SERM, tamoxifen (lanes 4 and 7). Input (1% of total)
of SRC-1 from hypothalamic extract is shown in lane 1.

FIG. 5. ER recruits SRC-1 from the hy-
pothalamus in a receptor subtype-specific
manner. A, In the presence of estradiol,
both ER� and ER� interacted with hip-
pocampal SRC-1, but little to no interac-
tions were detected in the absence of li-
gand or when receptors were bound to
tamoxifen. *, P � 0.0001, significantly dif-
ferent from ER� � estradiol; #, P �
0.0001, significantly different from ER� �
estradiol. B, Hypothalamic SRC-1 inter-
acted more strongly with both ER� and
ER� in the presence of estradiol than in
the absence of ligand or when receptors
were bound to tamoxifen. *, P � 0.0001,
significantly different from ER� � estra-
diol; #, P � 0.01, significantly different
from ER� � estradiol, and SRC-1 inter-
acted more with ER� than ER� when
bound to estradiol; **, P � 0.05, t test, n �
4–5 per treatment group.
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phosphorylation conditions, cell culture studies suggest that
both ER� and ER� can recruit coactivators to AF-1 in the
absence of ligand (45, 46). Whereas we detected little to no
interactions between receptor and SRC-1 from brain in the
absence of ligand, it will be important to investigate whether
physiologically relevant events that modulate ligand-inde-
pendent activation impact on receptor-coactivator interac-
tions in brain. Furthermore, under the present experimental
conditions, it appears that the selective receptor modulators,
tamoxifen and RU486, function as antagonists to prevent
receptor-coactivator interactions.

In the present studies, SRC-1 from the hippocampus ap-
pears to interact equally with ER� and ER� (Fig. 5A). As-
sociation of SRC-1 with ligand-bound ER� and ER� in the
hippocampus may be an integral component of estrogen’s
effects on cognition and memory (76, 77). Interestingly, in
contrast to the hippocampus, SRC-1 obtained from hypo-
thalamic extracts interacted more with ER� than ER� (Figs.
4 and 5B). ER�, and to a lesser extent ER�, are expressed in
the hypothalamus (12–16). In the hypothalamus, ER� is nec-
essary for the full expression of rodent female sexual behav-
ior (78–82), whereas ER� in this region appears to influence
anxiety and the stress response (77, 83). These different func-
tions of the ER subtypes in brain may be explained in part
by the different transcriptional abilities of these receptors.
The amino terminus is shorter in ER� than ER�, which may
account for the lower transcriptional activity of ER� ob-
served in particular cell lines (17). These differences in tran-
scriptional abilities between ER� and ER� may be attributed
to differential recruitment of coactivators, or differences in
the ability of the same coactivator to facilitate transcription
of the ER subtypes (84). Whereas some studies using recom-
binant SRC-1 are consistent with our findings that SRC-1
interacts more with ER� than with ER� (84), other findings
suggest that SRC-1 associates equally with each ER subtype
(74, 85). Whereas these later findings are consistent with
our results using SRC-1 from hippocampus, we observed
that SRC-1 from hypothalamus interacted more with ER�
than ER�.

These data suggest that ER� is a more efficient transcrip-
tional activator of SRC-1-dependent signaling pathways in
the hypothalamus than ER�. In support, previous findings
from our laboratory indicate that SRC-1 function in the hy-
pothalamus is important for maximal expression of ER-me-
diated female sexual behavior (62), which appears to be ER�
dependent (78, 79). These differential interactions of SRC-1
from hypothalamus or hippocampus with the ER and PR
subtypes suggest that these brain regions have distinct ex-
pression patterns of cofactors involved in these important
protein-protein interactions. In addition, it is possible that
SRC-1 undergoes differential phosphorylation in these two
brain regions, leading to distinct patterns of interaction with
receptors. Future experiments will need to apply mass spec-
trometry analysis to determine whether, in a brain region-
specific manner, different cofactors are present in the recep-
tor-coactivator complex and/or whether SRC-1 undergoes
differential phosphorylation.

These pull-down assays allow us to directly address the
differential interactions of SRC-1 with the PR and ER sub-
types. In addition, this approach allows the efficient detec-

tion of protein-protein interactions and the application of
mass spectrometry. However, one must be careful in inter-
preting the results from these assays, given that nonspecific
interactions can occur. In the present studies, little to no
interactions were detected between SRC-1 from brain and the
fusion protein tags alone (GST or Flag tags) or the resins only
(Fig. 1), suggesting there were no significant nonspecific
interactions between SRC-1 and fusion tags or resins. More-
over, Western blot analysis and mass spectrometry revealed
that SRC-1 interacted with receptor when bound to agonist but
not when bound to antagonist or unliganded, suggesting these
coactivator-receptor interactions were specific. It should be
noted that human ER and PR proteins were used to inves-
tigate interactions with SRC-1 protein from rat brain. It is
possible that SRC-1 from rat brain may interact differently
with human ER and PR, compared with rat receptor. How-
ever, the human PR ligand binding domain (LBD), the re-
ceptor region most critical for SRC-1 interactions (32, 86), has
a high degree of protein sequence homology (92%) with the
rat PR LBD (BLAST) (18, 87). Furthermore, the LBDs of hu-
man ER� and ER� are 89 and 90% identical in protein se-
quences to the LBDs of rat ER� and ER�, respectively (88).
However, given that discrete differences in protein structure
can lead to differences in protein interactions, it will be im-
portant to investigate endogenous interactions between
SRC-1 and steroid receptors in brain using coimmunopre-
cipitation assays in future studies. Nevertheless, the high
degree of homology between the rat and human LBDs of PR
and ER, taken together with the ligand-dependent nature of
the interactions in the present studies, suggest that our find-
ings provide important insights into the physical associa-
tions of SRC-1 from brain and these receptors.

In conclusion, the present data indicate that SRC-1 from
hypothalamus and hippocampus physically associate with
ER and PR in a ligand-dependent manner. These findings
extend our previous studies showing that SRC-1 is expressed
in ER and PR containing cells in brain regions important for
reproductive behavior (59). In addition, these protein-pro-
tein interaction studies provide further support for work
from our laboratory and others that reveal an important role
for SRC-1 in ER and PR action in brain (55, 60–63). Moreover,
the present studies reveal that SRC-1 from brain interacts
differentially with ER and PR subtypes in a brain region-
specific manner. Understanding how nuclear receptor coac-
tivators function with various steroid receptors, and their
subtypes, is critical to understanding how hormones act in
different brain regions to profoundly influence physiology
and behavior. Ultimately, investigation of these receptor-
coactivator interactions using brain tissue may allow the
identification of novel cofactors involved in the steroid re-
ceptor complex in brain.
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