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Population Genomics and the Bacterial Species Concept
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Abstract

In recent years, the importance of horizontal gene transfer (HGT) in bacterial evolution has been elevated
to such a degree that many bacteriologists now question the very existence of bacterial species. If gene
transfer is as rampant as comparative genomic studies have suggested, how could bacterial species survive
such genomic fluidity? And yet, most bacteriologists recognize, and name, as species, clusters of bacte-
rial isolates that share complex phenotypic properties. The Core Genome Hypothesis (CGH) has been
proposed to explain this apparent paradox of fluid bacterial genomes associated with stable phenotypic
clusters. It posits that there is a core of genes responsible for maintaining the species-specific phenotypic
clusters observed throughout bacterial diversity and argues that, even in the face of substantial genomic
fluidity, bacterial species can be rationally identified and named.
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1. Introduction

The impact of molecular systematics on bacterial classification has
been profound. Indeed, phylogenies based on highly conserved
molecules, such as ribosomal RNA, have fundamentally changed
our view of biological diversity (1, 2). These molecular phyloge-
nies have confirmed the existence of three primary divisions of
life (Archaea, Bacteria, and Eukarya), rather than the five that had
emerged from phenotype studies (Animalia, Plantae, Fungi, Pro-
tista, and Monera), and reveal that microbes comprise, by far, the
greatest amount of biological diversity (1, 3–5). Further, as addi-
tional highly conserved genes are examined, such as elongation
factor-1α, actin, α-tubulin, and β-tubulin, we gain confidence that
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molecular-based phylogenies can provide a fairly robust descrip-
tion of the major evolutionary lineages (6,7).

Just as molecules appear to have solved some of the out-
standing phylogenetic questions, their application has generated
an entirely new and unexpected controversy. They have revealed
that horizontal gene transfer (HGT) may play an important and
unexpectedly large role in evolution (Fig. 21.1) (8–11). Recent
observations of putative gene transfer events between some of
the deepest branches in the 16S ribosomal RNA-based tree of
life have raised the question of whether we should employ net-
works, rather than dichotomously branching trees, to represent
the relationships of evolutionary lineages over time (12). In fact,
the importance of HGT in bacterial evolution has been elevated
to such a degree that numerous bacteriologists now question the
very existence of bacterial species (13–15). If gene transfer is as
rampant as some propose, how could bacterial species survive
such genomic fluidity?

Traditional bacterial species designations were based upon
extensive phenotypic characterization of a large number of iso-
lates. Although current methods now require the use of 16S
rRNA sequence comparisons to identify the closest relatives of a
proposed species, phenotype still remains the primary criterion by
which species are identified (16). The emerging phylo-phenetic
bacterial species concept posits that a bacterial species is “a mono-
phyletic and genomically coherent cluster of individual organisms
that show a high degree of overall similarity with respect to many
independent characteristics, and is diagnosable by a discriminative
phenotypic property.” (16).

Numerous studies have revealed clusters of bacterial isolates
that share complex phenotypes and these clusters are often desig-
nated as species (17–21). In fact, Cohan uses the mere existence of

Fig. 21.1. The impact of gene transfer on molecular phylogenies. The tree on the left
represents a dichotomously branching set of lineages. Over time the lineages diverge
and result in extensive biological diversity. The tree on the right shows the impact of
extensive HGT, which serves to limit divergence and the resulting diversity. Such lin-
eages are homogenized by HGT and appear to have a shortened evolutionary history.
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these clusters as prima facie evidence of the existence of bacterial
species. He notes “Bacterial species exist . . . bacterial diversity is
organized into discrete phenotypic and genetic clusters, which are
separated by large phenotypic and genetic gaps, and these clusters
are recognized as species.” (22).

2. Molecular-
Based Species
Distinctions

More recent investigations into microbial species distinctions
have sought to incorporate estimates of molecular diversity into
the process of species identification. The assumption is that
this molecular diversity will fall into discrete clusters that cor-
respond with observed phenotype-based species clusters. Can
sequence variability be employed to inform the division of a genus
into species, to distinguish among similar species, or to address
whether bacterial species even exist (23–28)?

Early attempts to use molecular data to delineate bacterial
species began with the introduction of DNA–DNA hybridization,
in which bacterial species were defined as those isolates sharing
at least 70% hybridization under standardized conditions (29).
Given the enormous range of genetic variation detected in dif-
ferent clearly recognized species, it became clear that a variability
cutoff, such as is imposed with hybridization methods, was not
appropriate. Levels of variability will vary over the lifetime of a
species and will reflect aspects of its life history, particularly the
process by which it adapts to its range of habitats.

The use of DNA–DNA hybridization has largely been
replaced by the use of 16S rRNA sequences to determine the
closest relatives of an isolate, combined with extensive pheno-
typic data. A disturbingly large number of publications now
report species diversity based solely upon the quantity of novel
16S rRNA sequences detected (30–32). This approach has no
valid systematic basis and should be avoided at all cost (16, 33).
Variability in 16S rRNA sequences can provide a valid estimate
of molecular diversity, but that estimate cannot necessarily be
equated with species diversity.

One of the first gene-based investigations into the micro-
bial species concept was conducted in 2003 by Wertz et al.,
who sequenced six housekeeping genes from a sample of envi-
ronmental bacteria representing seven species of Enterobacte-
riaceae (34, 35). Molecular phylogenies for each of the genes
were inferred (Fig. 21.2) and the branching patterns of the
resulting trees compared. In almost every case, isolates from a
species formed a well-supported monophyletic group, which cor-
responded precisely with the clusters identified by phenotypic
data, and upon which species distinctions were initially delineated
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Fig. 21.2. Molecular phylogenies of six housekeeping genes for six species of
enteric bacteria. Each molecular phylogeny was inferred from the DNA sequences of
one housekeeping gene using maximum likelihood. Cladograms were based on max-
imum likelihood for six putative core genes. (a) gapA, (b) groEL, (c) gyrA, (d) pgi, (e)
ompA, and (f) 16S rRNA. Bootstrap values less than 50% (of 500 replicates) were omit-
ted. Confidence in the branching patterns is indicated along the branches. Shading
denotes a cluster of lineages that correspond to a named species. Taxa abbreviations
are CF: Citrobacter freundii; EB: Enterobacter cloacae; EC: Escherichia coli; HA: Hafnia
alvei; KO: Klebsiella oxytoca; KP: Klebsiella pneumoniae, and SP: Serratia plymuthica.
ECMG refers to E. coli strain MG1655; see (34).
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(16,36). A molecular-based enteric species phylogeny was inferred
from the composite data by concatenating the sequences of the
six genes (34). The concatenated sequence contained enough
phylogenetic signal to resolve all of the interspecies nodes and
thus provided a robust estimate of the enteric phylogeny, which
corresponded with the existing phenotype-based phylogeny. The
authors concluded that, at least for these enteric bacteria, bacterial
species clearly do exist and identical species designations emerge
from both phenotypic and genotypic data.

The use of multi-locus sequence typing (MLST), in which
portions of, generally, seven housekeeping genes are sequenced,
has become the norm for characterizing genetic diversity within
a bacterial species (37, 38). This method permits the analysis of
large numbers of related bacterial isolates, which is essential to
the determination of species designations (24, 38). Such studies
have confirmed that species designations based upon phenotypic
criteria have a corresponding underlying MLST-based genotypic
clustering (23,26,39,40).

3. Population
Genomics Informs
Species
Designations The availability of whole genome sequences for multiple isolates

of E. coli provided our first glimpse into the dynamic nature of
a species genome. Glasner and Perna (41) and Mau et al. (42)
compared six complete genomes of E. coli (including Shigella
flexneri) and revealed a highly conserved genomic backbone of
more than 3,000 genes, each with an average of greater than
98% sequence similarity among the isolates. Further, Mau et al.
(42) detected a high level of homologous recombination among
these shared genes, confirming earlier studies by Roger Milkman
(43,44). More surprising was the observation that this conserved
backbone was punctuated with hundreds of “sequence islands”
specific to one strain or another.

Edwards et al. (45) provided a similar comparison of two
complete and three draft genome sequences of Salmonella enter-
ica. As in E. coli, a backbone of highly conserved genes was identi-
fied, each with an average of greater than 99% sequence similarity
and a similar pattern of unique sequence islands specific to one
strain or another. This pattern of shared and unique sequences
appears to be common among many bacterial species (46–48).

Studies with subtractive hybridization and comparative
genome hybridization revealed that for Helicobacter pylori, E. coli,
and Staphylococcus aureus, strains within a species share roughly
75–85% of their genome. A comparison of eight genomes of
group B Streptococci revealed a core of 1,806 genes present in
every genome and 907 genes absent in one or more genomes.
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A similar comparison between five genomes of Streptococcus
pyogenes revealed a comparable level of genomic diversity and
predicted that each new genome added approximately 27 strain-
specific genes to the species total pan-genome. In contrast, eight
genomes of Bacillus anthracis revealed very few strain-specific
genes. In fact, after the addition of four genomes to the compar-
ison, no new unique genes were identified. The general pattern
that emerges is that members of a bacterial species share some
large fraction of their genomes, but often carry unique, strain-
specific sequences. The fraction of the genome that is shared ver-
sus unique varies greatly from one bacterial species to the next.

4. The Core
Genome
Hypothesis
and the Bacterial
Species Concept

Lan and Reeves were the first to recognize the potential link
between the observation of shared versus unique sequences in
bacterial genomes and its implication for discriminating bacte-
rial species (49). They proposed the Core Genome Hypothesis
(CGH), which distinguishes between that fraction of the genome
(the core) shared by all members of a species and the fraction
found in only a subset of the population (the auxiliary). Core
genes encode essential metabolic housekeeping and informational
processing functions (50). They are ubiquitous in a species and
define the species-specific characteristics. Auxiliary genes may or
may not be present in a strain and are generally genes that encode
supplementary biochemical pathways, are associated with phage
or other mobile elements, or encode products that serve to inter-
act with the external environment. Thus, auxiliary genes serve
in the adaptation of strains to local competitive or environmen-
tal pressures (14). They are likely to encode antibiotic resis-
tance, novel metabolic functions, toxin production, and the like
(51–53).

The CGH has dramatically influenced how bacteriologists
think about the nature of bacterial species. Prior to the CGH, the
strongest argument against the recognition of bacterial “species”
was the simple observation of HGT between bacterial lineages.
The fact that bacterial species gene pools may not be tightly closed
was enough reason for many microbiologists to conclude bac-
terial species could not survive such exchange. This contradicts
the clearly demonstrated fact that bacteria exist in phenotypic
clusters, which many microbiologists recognize as species. Even
more compelling, it is becoming clear that these well-defined
phenotypic clusters correspond to underlying genotype clusters
(26,39,48,54).

Some have argued that it is futile to expect a bacterial species
to ever be characterized fully at the genome level, particularly
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since as more genome sequences are obtained, the pan-genomes
(i.e., the sum of all genes identified within a species) of numer-
ous species continues to grow (55, 56). In fact, some predict
that hundreds of thousands of genome sequences are required
to fully define certain bacterial species (55). Others suggest that
the wide range of intra-species variation observed for bacterial
species reflects the lack of a universal and meaningful species def-
inition (50).

Many ecological and evolutionary factors will impact how
many unique genes a species pan-genome may encode and how
much genetic variation it harbors. There is no “one size fits all”
concept that can, or should, be applied. In fact, no existing species
definition requires that either the pan-genome or the level of
genetic variation be known in order to delineate members of a
species.

One of the more commonly accepted species concepts is
the Biological Species Concept (BSC) proposed by Ernst Mayr
(57). Mayr proposed that a biological species is comprised of
groups of actually or potentially interbreeding natural popula-
tions, which are reproductively isolated from other such groups
(57). Although Mayr developed this definition specifically for
eukaryotes, it can be modified to apply to bacteria. However, it
is important to note that at this juncture, the BSC should not
be taken to imply any particular process of speciation, merely
that the observation of more gene “sharing” (via recombination
and/or LGT) is observed within versus between putative bacterial
species. The Core Genome Hypothesis provides a perfect back-
drop from which to articulate this bacterial-based modification of
the BSC. According to the CGH, a bacterial species is comprised
of groups of strains that frequently exchange, or could exchange,
core genes, but which are relatively restricted from such exchange
with other groups.

The CGH predicts that a subset of genes, the core, is present
in all, or nearly all, individuals within a species. These are the
genes that provide the defining characteristics of a species and are
assumed to experience primarily purifying selection, to remove
deleterious mutations, and to maintain existing functions. As a
species evolves, its core genome will evolve as a complex of co-
evolved functions. When transferred between species, such genes
will most likely experience a selective disadvantage, as this will dis-
rupt co-evolved functions. Such transfer will rarely survive. Thus,
core genes will diverge as the species diverge (Fig. 21.1).

In contrast, auxiliary genes will be found in only a subset
of individuals within a species. The CGH predicts that these
genes experience intermittent positive selection, when their func-
tion enhances survival in a varied and ever-changing environment.
When such genes are exchanged between species, their functions
will often provide a selective advantage to the recipient. Frequent
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successful transfers between species will serve to limit the diver-
gence of auxiliary genes, relative to the core (Fig. 21.1).

The most specific prediction that emerges from the CGH
concerns the rate at which core and auxiliary genes accumu-
late variability. Core genes will, on average, display a neutral
rate of evolution, while auxiliary genes will experience a vari-
ety of selective pressures, including diversifying selection (act-
ing to increase levels of variation), directional selection (acting
to decrease levels of variation), balancing selection (acting to
maintain particular alleles in the species), and purifying selection
(acting to weed out deleterious mutations). Thus, the average
rate of evolution for auxiliary genes could be just about any-
thing, and the variance around this rate should be extreme. These
expectations, based upon the neutral theory (58), are quite use-
ful for testing predictions from the CGH (59). However, such
tests require population-based samples of multiple genomes per
species and, unfortunately, most existing species-based genome
samples are chosen to represent the diversity of clinical isolates of
human pathogens and thus will often underestimate standing lev-
els of genome diversity. The appropriate data are in the pipeline
and should soon be available to permit the sort of population
genomics required to address this complex and fascinating matter.

Although we are on the verge of obtaining the type and
amount of genotypic data required to examine bacterial species
definitions, it is important to note that there is little, if any, sub-
stantive data to support the conclusion that bacterial species do
not exist. Hence, the real argument remaining is not do they exist,
but rather how can they exist in the face of potentially high levels
of HGT. Our job is to develop an understanding of bacterial evo-
lution rich enough to explain this apparent paradox. The CGH
provides a set of testable hypotheses from which to launch this
exploration.

5. Conclusions

The community of bacteriologists has failed to establish a uni-
formly accepted definition of bacterial species. In part, this is
due to the extraordinary levels of bacterial diversity and its com-
plexity in terms of culturability, levels of observed HGT, impor-
tance in human health, and a variety of other scientific and social
factors. However, we are poised to witness a synthesis of the
general acknowledgment that bacteria are found in clusters of
complex phenotypes (often designated as species) and the under-
lying genetic basis for these clusters. The Core Genome Hypoth-
esis has, so far, provided the most compelling explanation for the
apparent paradox observed for bacteria, in which the observation
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of stable phenotypic clusters apparently contradicts the existence
of dynamic, fluid genomes. The CGH recognizes a species core
genome, responsible for maintaining a species identity, and an
auxiliary genome, responsible for gene transfer and rapid adapta-
tion of strains to an ever-changing environment. The CGH argues
that, even in the presence of substantial genomic fluidity, bacterial
species can be rationally identified and named.
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Nesme X., Rosselló-Mora R., Swings J.,
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