
REVIEW ARTICLE

Timing of Thyroid Hormone Action in the Developing Brain:
Clinical Observations and Experimental Findings

R. T. Zoeller* and J. Rovet†
*Biology Department, Morrill Science Center, University of Massachusetts, Amherst, MA, USA.
†Department of Pediatrics and Psychology, University of Toronto, and Brain and Behavior Program, The Hospital for Sick Children, Toronto, Canada.

Key words: thyroid hormone, congenital hypothyroidism, maternal hypothyroidism, hypothyroxinemia, brain development.

Abstract

The original concept of the critical period of thyroid hormone (TH) action on brain development was

proposed to identify the postnatal period during which TH supplement must be provided to a child with

congenital hypothyroidism to prevent mental retardation. As neuropsychological tools have become more

sensitive, it has become apparent that even mild TH insufficiency in humans can produce measurable

deficits in very specific neuropsychological functions, and that the specific consequences of TH deficiency

depends on the precise developmental timing of the deficiency. Models of maternal hypothyroidism,

hypothyroxinaemia and congential hyperthyroidism have provided these insights. If the TH deficiency occurs

early in pregnancy, the offspring display problems in visual attention, visual processing (i.e. acuity and

strabismus) and gross motor skills. If it occurs later in pregnancy, children are at additional risk of subnormal

visual (i.e. contrast sensitivity) and visuospatial skills, as well as slower response speeds and fine motor

deficits. Finally, if TH insufficiency occurs after birth, language and memory skills are most predominantly

affected. Although the experimental literature lags behind clinical studies in providing a mechanistic

explanation for each of these observations, recent studies confirm that the specific action of TH on brain

development depends upon developmental timing, and studies informing us about molecular mechanisms

of TH action are generating hypotheses concerning possible mechanisms to account for these pleiotropic

actions.

Clinical and experimental studies demonstrate thyroid
hormone (TH) is essential for normal brain development.
This was documented initially in children with congenital
hypothyroidism (1–5), followed by animal studies focused on
cerebellar development, which occurs largely postnatally
(6–9). However, recent observations in humans (10–13)
provide important new evidence that TH is also important
in early (foetal) brain development, and that the timing and
severity of TH insufficiency predicts the type and severity of
the neurological deficits. Because these deficits presumably
reflect the impact of a loss of TH on different aspects of brain
development, this clinical research provides clues as to when
and where TH exerts its actions in developing brain.
Animal models of developmental TH insufficiency are

beginning to provide mechanistic explanations for these

observations in humans. The use of genetic models of TH
insufficiency, of TH receptor deletion and mutation, and of
cofactor deletion (14–17), are showing us how different brain
regions may exhibit different sensitivity to TH during devel-
opment. Moreover, these studies show that TH exerts
different effects in different brain areas at different times
during development. However, despite advances in our
understanding of TH action, the specific developmental events
affected by TH remain poorly understood. Several recent
comprehensive reviews on TH actions in brain development
have appeared (6, 7, 14). Thus, our goal here is to describe
the clinical studies leading to the proposition that the timing
of TH insufficiency produces differential effects on neuro-
psychological outcome, and to review the experimental studies
that provide some mechanistic insight into these issues.
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Timing of TH action in the developing human brain

The feotal thyroid does not become functional until the 12th
week of gestation (18–20); therefore, the foetus must depend
entirely on TH of maternal origin during the first trimester
and assume an increasingly greater role in producing TH as
gestation progresses. Conditions involving a reduced mater-
nal TH supply include maternal hypothyroidism, which
typically begins during the first trimester, or premature birth,
which severs the foetus from maternal TH early during the
third trimester. A condition that produces TH insufficiency in
the foetus still later in development is congenital hypothy-
roidism. Each of these conditions is associated with impaired
neurodevelopment.

Maternal hypothyroidism

Nearly 3% of pregnant women have low normal (to low)
circulating levels of T4 (11, 12, 20–23). Most of these women
are not aware of their biochemical insufficiency, and most
likely attribute their mild symptoms to pregnancy. Because
foetuses of women with undiagnosed hypothyroxinaemia are
exposed to reduced TH, these children experience TH
insufficiency, the severity of which is dependent upon the
severity of the mother’s TH insufficiency (20). Many women
with pre-existing hypothyroidism are diagnosed and treated
with supplemental T4, but the majority of these women tend
to be under-treated because their T4 doses are not increased
to match the normal physiological demands for TH during
pregnancy (24). Thus, studies of women with known hypo-
thyroidism, and screening studies of large populations of the
offspring of women with abnormal thyroid function during
pregnancy, represent two important approaches to under-
stand the specific consequences of intrauterine TH insuffi-
ciency.

Case studies have identified suboptimal neurological out-
come in offspring of hypothyroid women, including dimin-
ished perceptual and motor ability (25), as well as a markedly
short attention span (26). In a survey of 23 families involving
maternal hypothyroidism treated during pregnancy, Matsu-
ura and Konishi (27) found that, in five pregnancies involving
severe hypothyroidism, four children were developmentally
delayed. Smit et al. reported (21) that the offspring of
hypothyroid women did not differ in neurophysiological or
motor development, but exhibited significantly lower mental
development indices at 6 and 12 months. We have been
following infants of women identified with hypothyroidism
before or during pregnancy and have found effects on specific
cognitive abilities such as poorer attention, slower and more
variable reaction times to visual stimuli and visual processing
deficits (28). Our findings also suggest that different types of
visual deficits occur in response to TH insufficiency at
different times during pregnancy (29).

In the 1960s, Man (30) found that the first 12–29 weeks of
pregnancy is a critical period, when the neural substrates of
some abilities that depend on the visual system, and also some
aspects of the motor system that also depend on vision, are
particularly vulnerable to TH insufficiency. A more recent
series of studies by Pop et al. (12, 13, 31) demonstrate the
critical need for TH early in pregnancy by finding that levels

of free T4 and the presence of circulating antibodies for
thyroid peroxidase were strong predictors of infant mental
development/children’s IQ. Studies by Haddow et al. (11)
determined that the children of women with low normal
serum T4 had a higher incidence of IQ levels in the subnormal
range (i.e. < 1 SD below normal) compared to matched
control children. Moreover, these children scored lower than
controls on multiple aspects of cognitive functioning includ-
ing auditory and visual attention, reading, visuomotor ability
and word discrimination. The results suggest that fine and
graphomotor skills and reading abilities are sensitive to TH
insufficiency after 16 weeks’ gestation, whereas visual atten-
tion abilities are sensitive to TH insufficiency before 16 weeks
(32, 33).

Infants born prematurely also provide a model of foetal
TH insufficiency because they lose maternal TH before their
own glands are fully functional (34). Typically, these children
exhibit low TH levels at birth and their TH levels decline in
the interval between birth and projected term (34–36).
Hypothyroxinaemia associated with premature birth is most
evident in infants born extremely early (37–41) and with very
low birth weights (42, 43) and neonatal illness (e.g, broncho-
pulmonary dysplasia, intraventricular haemorrhage, or peri-
ventricular leukomalacia) (44–47) (i.e. high risk births).
However, it is also seen in preterm infants who are considered
to be low-risk, namely those born between 30 and 33 weeks’
gestation (48). High-risk preterm infants generally exhibit
severe deficits that are attributed to their neonatal disease as
well as their very early births (49–57). However, in the low-
risk preterm population, which constitutes the bulk (85%) of
preterm infants, as many as 50% of infants exhibit mild
neurocognitive impairment (58). Particularly affected are
their visuospatial and fine motor skills (49–53), selective
attention and memory abilities (54–57, 59–61), math compe-
tency and contrast sensitivity (29).

Studies evaluating the consequences of hypothyroxinaemia
of prematurity have reported an increased incidence of
cerebral palsy (62), reduced intelligence (40, 63–66) and poor
psychomotor abilities (67) in children whose TH levels were
low at birth. We have further observed an inverse correlation
between declining T4 levels in the third trimester of pregnancy
and motor and attention skills in young preterm infants born
at low risk (68).

To determine whether hypothyroxinaemia of prematurity
can be corrected by exogenous administration of thyroxine,
van Wassenaer and colleagues gave high-risk preterm newb-
orns a 6-week trial of T4 (69, 70). These children were
evaluated at 6 months to 5.5 years of age (78). Although the
treated group showed significantly higher levels of serum T4,
neurophysiological functioning (71, 72) or cognitive abilities
were not improved (71, 73, 74). However, when children were
stratified by gestation age, a marked benefit of TH therapy
was observed for early neuromotor skills and later cognitive
abilities in children born before 27 weeks (72) whereas
children born at 28 or 29 weeks showed the opposite effect,
performing worse than controls. This dissociation has been
attributed to developmental changes between 25 and
30 weeks in the availability of deiodinase enzymes required
to convert T4 (in the medication) to T3 (75). To test this
hypothesis, Van Wassenaer et al. (70) gave preterm infants
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past 27 weeks a single dose of T3 12 h after birth and found
increased plasma T3 levels for as long as 8 weeks with no
clinical side-effects and this therapy was associated with
improved outcome.
Congenital hypothyroidism represents a model of TH

insufficiency that takes place somewhat later than the two
previous conditions. Despite the success of neonatal screening
programmes to identify and treat congenital hypothyroidism
in newborns (76, 77), these children still exhibit impairments
(78). Their IQ levels average approximately 6 points below
expectation (79) and they also show selective deficits on
visuospatial, motor, language, memory and attention tests
(80–85). Approximately 20% of cases also have a mild
sensorineural hearing loss (86, 87), which contributes to
difficulties in initially learning to read.
A wide degree of variability in TH levels exists among

individual children with congenital hypothyroidism. This
variability reflects a number of factors associated with both
the disease (endogenous factors) and its treatment (exogenous
factors) (34). Children with athyreosis typically have the
lowest serum T4 and the poorest outcome, attaining the
lowest IQ scores (88), have more impaired nonverbal visuo-
spatial and arithmetic functioning than the other aetiologic
groups (89), and show a basic visual deficit involving poor
contrast sensitivity (90). Factors associated with treatment
(initial dose of T4 and serum T4 levels maintained) show that,
in general, a delay in the initiation of treatment is associated
with poorer outcome (2), but the effects of this delay is
specific to visuomotor and language skills (84). Following the
advent of newborn screening, recommended starting dose
levels have increased over the years, although the issue of the
optimum starting dose has yet to be resolved. Abilities most
affected by a low starting dose level are children’s memory
and fine motor skills (91). In addition, with the longer time
that it takes to normalize TH levels following the initiation of
treatment, the weaker language, fine motor and auditory
processing discrimination abilities (84), as well as increased
selective attention and memory deficits (92, 93), suggest that
these abilities are sensitive to postnatal TH insufficiencies.
To summarize across conditions, TH is necessary for

adequate development of a number of neuropsychological
abilities whereas the type of deficit depends on the timing of
TH deficiency. Generally, a prenatal TH loss contributes to
difficulties in visual processing, motor (including oromotor),
and visuomotor abilities whereas an early neonatal TH
insufficiency is associated with impaired visuospatial abilities.
A TH insufficiency somewhat later in postnatal development
is associated with sensorimotor and language deficits whereas
hypothyroidism that extends even further in infancy is
associated with poorer language, fine motor, auditory pro-
cessing, attention and memory skills. Children who are
treated quite late in infancy additionally show deficits in
executive processing that is not normally affected in this
population.
To summarize across abilities, aspects of visual processing

appear to depend on an adequate intrauterine and perinatal
TH supply with more basic visual processes (contrast
sensitivity) exhibiting TH-dependence earlier than higher-
order visual processing (visuospatial abilities). Similarly,
neural substrates supporting gross motor skills tend to

require adequate TH before those requiring fine motor skills,
whereas language and memory skills appear to be
TH-dependent postnatally.

Experimental studies on the mechanisms of TH action
in developing brain

Few experimental studies have focused on identifying the
developmental windows of TH action in the developing brain,
or on identifying the changing patterns of TH action across
brain regions during development. By contrast, experimental
animals are usually made severely hypothyroid throughout
pregnancy and the progeny are further treated throughout
postnatal development. Although these experiments are
important, and have provided us with information about
the role of TH in brain development, they do not provide
insight into the developmental timing of TH action on specific
brain areas that may underlie the observations in humans.
Because this literature has been recently reviewed (6, 7, 14),
we will focus on the issue of the developmental timing of TH
action.

Prenatal TH insufficiency appears to affect adult behav-
iours differently than postnatal TH insufficiency. Friedhoff
et al. (94) used an experimental paradigm in which female
rats were made hypothyroid before mating and the progeny
were cross-fostered to dams with normal thyroid function at
the time of birth. They found that, on postnatal day 80, there
was a gender difference in the effects of prenatal hypothy-
roidism on learning, with females being more sensitive to TH
insufficiency than males. The treated animals exhibited
learning deficits and �hyperactivity�. This finding differs from
those of studies in which animals are exposed to TH
insufficiency throughout the perinatal period in that the latter
animals exhibit reduced motor activity (95–97). Therefore, in
rats as in humans, the timing of TH insufficiency appears to
produce different behavioural effects, with prenatal TH
insufficiency producing attention deficit and hyperactivity,
but postnatal TH insufficiency producing reduced motor
activity.

Many studies have characterized the neuroanatomical
consequences of developmental hypothyroidism. Early work
by Eayrs demonstrated that perinatal hypothyroidism could
alter the density and size of neuronal perikarya within specific
brain areas, as well as fibre density and orientation within
adult cortical layers (98–100). More recently, Berbel et al.
(101–104) have published a series of studies characterizing the
effect of developmental hypothyroidism on a variety of
anatomical features, including spine density of pyramidal
neurones in the cerebral cortex, the organization of callosal
connections, and other features. These studies have shown
that hypothyroidism produces changes in callosally projecting
neurones, which may be due to the maintenance of a juvenile
pattern of projections.

Two recent studies focus on the role of maternal TH in
foetal brain development. Lavado-Autric et al. (105) took
advantage of the fact that cortical neurones occupying
different lamina are born at different times. Specifically,
neurones born late in the process of cortical development
migrate past earlier-born cells to occupy more superficial
layers of the cortex (106, 107). Using timed exposure to
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bromodeoxyuracil (BrdU), the authors were able to track the
final destination of cells born at a specific time and determine
whether they occupied the proper layer in adulthood. They
found a significant proportion of BrdU+ cells in the cortex of
pups derived from mildy hypothyroid dams did not migrate
far enough. Because cells born early in the process of cortical
histogenesis take up residence in deep layers of the cortex,
some of these cells (neurones) were even found in the
subcortical white matter. A second study (108) found similar
effects in pups whose mothers had been treated with the
goitrogen methimazole for only 3 days during pregnancy.
The dams experienced only a transient, 30% reduction in
serum total T4, which was not associated with an increase in
serum thyroid-stimulating hormone. Thus, maternal hypo-
thyroxinaemia can produce migration defects in the foetal
cortex and, although there is little information about the
consequences on functioning of the adult rat brain, it is very
clear that migration defects in the human brain are associated
with neurological deficits (109).

Thyroid hormone increases proliferation of cerebellar
granule cells (110, 111). Using morphometric measures,
Madeira et al. (112) showed that TH affects the volume and
packing density of cells in the dentate gyrus in a manner
consistent with effects on cell proliferation. However, because
TH is known to affect apoptosis (at least in cerebellar granule
cells) (113), it is possible that TH affects dentate morphology
as much by affecting apoptosis as by affecting proliferation.
Hadj-Sahraoui et al. (114) recently evaluated the effect of TH
on cell proliferation in the olfactory bulb, subventricular zone
of the cerebral cortex, hippocampus and cerebellum in the
postnatal mouse using BrdU labelling and observed site-
specific effects. In particular, hypothyroidism increased BrdU
labelling in the olfactory bulb and cerebellar cortex but
decreased BrdU labelling in the subventricular zone of the
neocortex and had no effect on the hippocampus.

Thyroid hormone in culture can increase or decrease
proliferation, depending on the culture system and condi-
tions. Thyroid hormone suppresses proliferation of oligo-
dendrocytes purified from neonatal rat brain (115). This
observation is consistent with the finding that T3 leads to a
sustained down-regulation of c-myc in N2a-b cells, and an
increase in the expression of the cyclin-dependent kinase
inhibitor p27Kip1 (116). By contrast, TH increases prolifer-
ation of GC cells (a rat pituitary cell line with functional TH
receptors) in culture at least in part by a rapid suppression of
Wnt pathway-associated genes (encoding b-catenin, TCF4,
Dishevelled-1, Frizzled, axin and APC) (117). This observa-
tion is consistent with TH effects on cerebellar granule cell
proliferation in vivo, although it is not known if the
mechanism is the same.

Although these studies provide information about the
effects of TH on developmental processes in the rodent brain,
they do not inform us about the specific timing of TH effects.
One of the best examples of temporal changes in the
sensitivity to TH during brain development is that of the
cerebellum. The rodent cerebellum undergoes a period of
rapid growth during the first two postnatal weeks (118).
During this period, the population of granule cells expands in
the external granule layer (EGL) causing this layer to thicken.
As granule cells migrate inwardly to form the internal granule

layer (IGL), the EGL shrinks, ultimately disappearing, and
the IGL expands. These transient changes in thickness of the
EGL and IGL follow a reproducible temporal pattern.

Hypothyroid rats exhibit a persistent EGL, reduced pro-
liferation of granule cells in the EGL (111) and slowed
migration of granule cells into the IGL (110, 119). In normal
animals, granule cells in the IGL undergo a period of
apoptosis, reaching a peak at postnatal day 8, and ending by
postnatal day 22 (113). However, hypothyroidism increases
the incidence of apoptosis in the IGL on postnatal day 8 and
extends the period of apoptosis beyond postnatal day 22,
resulting in a thinner IGL in adulthood. These observations
demonstrate that TH plays a role in proliferation of granule
cells in the EGL, migration of these cells to the IGL and
apoptosis in the IGL during a developmental period that
approximately extends from birth to weaning.

The temporal pattern of TH responsiveness in the cerebel-
lum extends to the regulation of individual genes. Myelin
basic protein (MBP) is an essential protein involved in
myelination (120). The gene encoding MBP is regulated
directly by TH (121). Ibarrola and Rodriguez-Pena (122)
demonstrated that hypothyroidism reduces MBP expression
in the perinatal brain whereas Schwartz et al. (123) found that
MBP expression was not sensitive to TH in the late
gestational fetus. Thus, there is a �critical period� of TH
action on MBP expression that coincides with the period of
active myelination for a specific brain region. However, it
does not appear that the developing brain undergoes a single
critical period of TH responsiveness. TH may affect a
developmental process in all brain areas but, because that
process does not occur simultaneously in all brain areas, the
critical period of TH responsiveness is temporally shifted
accordingly. Likewise, there is no a priori reason to postulate
that TH exerts effects on the same developmental process in
all brain areas. Several aspects of the molecular mechanisms
of TH action provide a variety of possibilities to explain the
pleiotropic effects of TH on the developing brain.

Different TR isoforms may mediate some cell-specific effects

It is possible that cell- or developmental time-specific gene
regulation by TH is attributable, at least in part, to the
differential expression of thyroid hormone receptor (TR)
isoforms (124). TRa2 does not bind to TH; it appears to be a
constitutive repressor, and may be a repressor of TRa1/TRb1
activation (125). Thus, its expression could represent a
mechanism by which TH regulation of gene expression is
abrogated. Although the binding characteristics of TRa1 for
T3 are not different from those of TRb1, these two receptors
may target different response genes for regulation (124, 126).
TRa1, TRb1 and TRb2 can also dimerize with members of
the broader family of nuclear proteins, including RARs and
RXRs. This interaction can influence the regulatory element
to which the heterodimer binds and thus provides target gene
specificity (126–128). This may be an important mechanism
by which the same TR isoform can mediate effects of TH on
the expression of different genes in different cells.

Empirical evidence for the concept that different TR
isoforms mediate TH effects on different cells is derived from
recent work from the Bernal laboratory in Madrid. They have
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demonstrated that TRa1 selectively mediates cerebellar
granule cell migration from the EGL to the IGL (8), but
that TRb1 regulates the expression of Purkinje cell-specific
protein-2 (PCP-2) in cerebellar Purkinje cells and is involved
in Purkinje cells growth (129). This conclusion is based on the
observation that hypothyroid mice exhibit defects in granule
cell migration and Purkinje cell growth, that TH replacement
can ameliorate both of these effects of hypothyroidism, and
that the TRb1-selective agonist has no effect on granule cells
but partially restores Purkinje cell growth (129). This
conclusion is based on the observation that hypothyroid
mice exhibit defects in granule cell migration and Purkinje cell
growth, that TH replacement can ameliorate both of these
effects of hypothroidism, but that the TRb1-selective agonist
has no effect on granule cells but partially restores Purkinje
cell number and morphological features (129).
TH-dependent gene activation by TRs is mediated by one

of a number of cofactors: corepressors or coactivators. These
proteins appear to provide a physical link between the
hormone receptor and the transcriptional machinery. A
variety of methods indicate that many proteins, including the
Brg (SWI/SNF) complex, CBP/p300, p160 factors, P/CAF
and the TRIP/DRIP/ARC complexes, are critical coregula-
tors for at least some nuclear hormone receptors (130). Some
factors harbour nucleosome remodelling activities, including
histone acetyltransferase/deacetylase activities (126, 131–133).
For TRs, there is an exchange of cofactors such that the
unliganded TR is bound to DNA and recruits a corepressor
such as N-CoR or SMRT (134–136). Following T3 binding to
the TR, the corepressor is released and a coactivator, such as
SRC-1, is recruited (137–139). These conclusions, based on
work performed in vitro, explain a number of important
observations made in vivo. Specifically, targeted deletion of
TRs (both alpha- or beta- TRs) does not produce a
phenotype similar to that of hypothyroidism (17). By
contrast, mice carrying a mutant TRb1 that does not bind
to thyroid hormone produces severe neurological defects
similar to that of hypothyroidism (140). Thus, it is the
unliganded TR, consititutively bound to the corepressor, that
mediates the deleterious effects of hypothyroidism.

Thyroid hormone modulates developmentally important genes
in the foetal cortex

Considering that TRs are ligand-dependent transcription
factors, we recently initiated a series of studies to determine
whether TH of maternal origin could selectively regulate gene
expression in the fetal brain. Using a very limited combina-
tion of primers in a mRNA differential display paradigm,
several TH-responsive genes were identified in the E16 foetal
cortex, including Neuroendocrine Specific Protein-A (NSP-
A), Oct-1, and RC3/Neurogranin (141–143). Identification of
these genes as TH-responsive in the foetal cortex before the
onset of fetal thyroid function represents important evidence
that maternal TH can directly affect brain development.
All of these genes are selectively expressed in the ventricular

zone of the E16 cortex (141, 143). Because the TRb1
transcript is selectively expressed in the E16 ventricular zone,
it is possible that these genes are regulated directly by TRb1.
Cells in the ventricular zone undergo proliferation before

committing to a specific fate (106, 144–146). Therefore, we
tested whether TH affects cell proliferation in the ventricular
zone using BrdU. We found that manipulation of maternal
thyroid status did not alter the number of BrdU-labelled cells
in the ventricular zone on E16 (Iannacone EA, Zoeller RT,
unpublished data); nor did it alter the expression or number
of cells labelled with proliferating cell nuclear antigen
(unpublished data). These findings indicate that TH does
not affect proliferation of cortical neurones at a period of
peak neurogenesis. By contrast, our data indicate that TH
exerts effects on fate specification of these early neuroblasts in
the ventricular zone of the fetal cortex.

Specifically, we found that TH increases the expression of
the basic HLH gene Hes-1 (147), a gene regulated by the
Notch receptor. Originally identified in Drosophila, the Notch
receptor is a membrane-bound protein whose extracellular
domain can bind to a ligand such as Delta or Jagged, proteins
that also are membrane-bound (148). Upon ligand binding,
the Notch receptor is cleaved by a gamma-secretase, liber-
ating the Notch intracellular domain to translocate to the
nucleus and regulate the expression of Hes-1 (149). Hes-1
(Hairy-enhancer of Split) (150) inhibits neurogenesis and
favour gliogenesis (151–154); we are currently pursuing the
working hypothesis that TH of maternal origin is involved in
controlling the balance in production of neurones and glia in
the ventricular zone of the early cerebral cortex. This
hypothesized role of TH in fate specification of neural stem
cells is similar to the role of TH in the control of oligodend-
rocyte differentiation (155, 156). Moreover, Johe et al. (157)
reported that neural progenitors isolated in culture from E16
cortex would produce oligodendrocytes at the expense of
neurones when provided with T3.

Taken together, our studies demonstrate first that TH of
maternal origin can selectively affect gene expression in the
foetal cortex. Although this is an important observation, it
does not, in itself, help us to understand the developmental
events influenced by TH during brain development. The
observation that TH affects Hes-1 expression in the ventric-
ular zone of the E16 cortex indicates that TH may be
affecting fate specification of neural progenitor cells (158).
Interestingly, Notch signalling appears to be important in
cortical neurite outgrowth (159). Considering that TH also
affects neurite outgrowth (160), it is possible that TH affects
neurite outgrowth by influencing Notch signalling later in
development, as well as in cells before their terminal
differentiation.

Conclusions

Thyroid hormone exerts effects on the brain throughout
development, but the specific effects are different as develop-
ment proceeds (Fig. 1). The studies of three clinical thyroid
disorders show that TH is essential for adequate development
of very specific neuropsychological functions and, when TH is
insufficient, these functions are impaired. Across conditions,
the findings suggest that the developmental timing of TH
insufficiency is critical to the type of neurological deficit that
occurs, and the source of TH insufficiency can be maternal,
fetal or infant in origin. Experimental work lags behind the
clinical work as it relates to the effects of modest TH
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insufficiency and the precise timing of those deficits on brain
development. However, the experimental literature clearly
supports the concept that TH is important throughout brain
development, but that its effects at any one time will be
restricted to a subset of developmental events occurring at
that time. Conversely, clinical work is dependent on tests that
are impure measures of specific abilities and only grossly map
onto specific brain regions lags. This work therefore lags
behind the experimental in terms of specificity of TH action.

Recent work is beginning to focus on the molecular and
cellular mechanisms underlying TH effects on specific devel-
opmental events and this will lead to better insight into
clinical findings. Furthermore, the potential for neuroimaging
studies of clinical populations will increase our understanding
of the specificity of TH loss on the developing human brain.
Information concerning the mechanisms of TH action pro-
vides ample evidence for the regulatory flexibility of this
important endocrine system that may be employed to
selectively regulate specific aspects of brain development. It

will be important to capitalize on our understanding of the
molecular mechanisms of TH action to define the mechanisms
by which TH affects specific developmental processes in the
mammalian brain.
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