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Challenges Confronting Risk Analysis of Potential
Thyroid Toxicants

R. Thomas Zoeller∗

Screening and testing for potential thyroid toxicants using endpoints of thyroid function,
including circulating levels of thyroid hormones and thyrotropin, will not capture toxicants that
directly interfere with thyroid hormone action at the receptor. The goals of the present review
are to provide a critique of the literature focused on thyroid hormone and brain development
as it relates to testing and evaluating thyroid toxicants, and to propose possible solutions to
this perceived dilemma.
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1. INTRODUCTION

There is a long history of clinical observations on
children with congenital hypothyroidism (CH) that
demonstrate the importance of thyroid hormone in
brain development.(1−5) This disorder is caused prin-
cipally by failure of the thyroid gland to develop prop-
erly,(6) which produces severe thyroid hormone insuf-
ficiency in these children after birth if it is undiagnosed
and uncorrected.(7,8) In addition to post-natal thyroid
hormone insufficiency present in CH, recent evidence
strongly supports the concept that thyroid hormone is
also essential to brain development during fetal life.
A growing number of studies indicate that children of
women with low serum thyroid hormone during preg-
nancy have increased incidence of attention deficit,
lower global IQ,(9−13) and specific types of visual
problems.(14)

The importance of thyroid hormone in brain
development, and the irreversibility of the effects of
thyroid hormone insufficiency, underscores the im-
portance of identifying environmental agents that
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may interfere with thyroid hormone action during
development. Because developmental studies con-
ducted on humans would clearly be unethical, it is
essential to apply valid experimental models to iden-
tify such agents. However, there are no experimental
endpoints of thyroid hormone action in the develop-
ing brain that have been employed to determine the
adverse neurodevelopmental consequences of thy-
roid toxicants. Thus, the ability of potential thyroid
toxicants to affect brain development is largely un-
characterized. This is particularly true for agents that
are not expected to produce frank hypothyroidism
but, instead, produced subtle changes in thyroid hor-
mone action. Therefore, the goals of the present re-
view are to provide a critique of the literature fo-
cused on thyroid hormone and brain development
as it relates to evaluating potential thyroid toxins
and to propose possible solutions to this perceived
dilemma.

2. ENDOCRINOLOGY OF
THE THYROID SYSTEM

The thyroid system is a classic neuroendocrine
axis; the hypothalamus controls the pituitary gland,
which in turn controls the thyroid, and feedback

143 0272-4332/03/1200-0143$22.00/1 C© 2003 Society for Risk Analysis



144 Zoeller

mechanisms between thyroid secretions and the
hypothalamus and pituitary maintain the activity
of this axis within narrow limits.(15) The active
thyroid hormones, thyroxin (T4) and triiodothyro-
nine (T3), are two of the iodothyronines formed
in the thyroid gland. These hormones are synthe-
sized in an unusual way in that they are derived
from coupling two iodinated tyrosyl residues that
make up the larger hormone precursor, thyroglob-
ulin (TG). Thyroglobulin is a large glycoprotein
containing two identical subunits each of nearly
3,000 amino acids, creating a 660 kDa mature pro-
tein.(16) Following iodination, the protein is stored in
the colloid, the fluid filling the central core of the
thyroid follicle. At the time of hormone release, io-
dinated TG is taken up into the cell from the col-
loid, digested by lysosomal enzymes, liberating T3

and T4 into the blood.(17) Thyroxin is the predom-
inant iodothyronine released by the thyroid gland;
circulating T3 is formed largely from peripheral deiod-
ination of T4.(18) The pituitary glycoprotein hormone,
thyrotropin (TSH),(19) regulates the synthesis and se-
cretion of thyroid hormones by activating adeylate cy-
clase in thyroid follicular cells.(20) However, there are
a number of important extrathyroidal processes that
combine to maintain circulating thyroid hormones
within a relatively narrow concentration range.(18)

Although T4 is the predominant form of thyroid hor-
mone in the serum, T3 is the active hormone at the re-
ceptor. The term “thyroid hormone” will be abbrevi-
ated in the remainder of this article to “TH” to include
both T4 and T3, recognizing the differences between
the two.

Normal variation in circulating concentrations
of T4 reflects short-term pulsatile and diurnal vari-
ation.(21) Thyroid hormones exert a negative feed-
back effect on pituitary secretion of TSH,(22,23) and
on the hypothalamic secretion of the releasing fac-
tor, thyrotropin-releasing hormone (TRH).(24−26) Al-
though it is clear that TRH is a major factor regu-
lating TSH secretion, several hypothalamic factors
contribute to TSH regulation, including somatostatin,
dopamine, and norepinephrine.(22) Moreover, some
investigators suggest that the primary role of TRH in
the regulation of TSH secretion is to modulate the
set-point around which TH act on the pituitary.(27,28)

Thus, circulating levels of TH, and the balance be-
tween different forms of these hormones, are con-
trolled by a number of processes. Additional details of
thyroid endocrinology are diagrammed and described
in Fig. 1.

3. THYROID HORMONE AND BRAIN
DEVELOPMENT

3.1. Thyroid Hormone and the Human Neonate

It is well established that TH is essential for brain
development during the neonatal period in humans,
especially as revealed in the disorder known as con-
genital hypothyroidism (CH).(8,29−37) Congenital hy-
pothyroidism occurs at a rate of 1 in 3,000 to 1 in
4,000 live births.(30) There are several causes of CH,
including thyroid dysgenesis, agenesis and athyreosis,
inborn errors of TH synthesis, and, less often, sec-
ondary or tertiary hypothyroidism.(30,38) Because CH
infants do not present a specific clinical picture early,
their diagnosis based solely on clinical symptoms was
delayed. For example, before the initiation of routine
neonatal screening for TH, only 10% of CH infants
were diagnosed within the first month, 35% within
three months, 70% within the first year, and 100%
only after three years.(39,40) The intellectual deficits as
a result of this delayed diagnosis and treatment were
profound. One meta-analysis found that the mean
full-scale IQ of 651 CH infants was 76.(41) More impor-
tantly, the percentage of CH infants with an IQ above
85 was 78% when the diagnosis was made within three
months of birth, 19% when it was made between three
and six months, and 0% when diagnosed after seven
months of age.(41,42)

Because CH is difficult to diagnose on the ba-
sis of clinical symptoms alone, and because of the
profound consequences both to society and to the
individual, universal neonatal screening for circulat-
ing T4 and/or TSH has been implemented by a num-
ber of countries.(30,42) This screening program has
been enormously successful at identifying CH chil-
dren rapidly and providing effective therapy, prevent-
ing the pervasive and profound neurological deficits
previously attributable to CH.(3,30,37,43,44) However,
recent studies reveal that specific clinical manifes-
tations of CH persist even if it is diagnosed and
treated early.(1,2,5,36,45−52) Although some of the vari-
ability in outcome can be attributed to variability
in circulating T4 sustained by treatment, a consider-
able amount of this variability is attributable to fetal
hypothyroxinemia.

3.2. Thyroid Hormone and the Fetus

Thyroid hormones are detected in human
coelomic and amniotic fluids as early as at eight weeks
of gestation, before the onset of fetal thyroid function
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Fig. 1. The hypothalamic-pituitary-thyroid axis.

Numbers in filled diamonds refer to the legend below, which provides descriptions of the specific level of the thyroid system.
1. Neurons whose cell bodies reside in the hypothalamic paraventricular nucleus (PVN) synthesize the tripeptide Thyrotropin-Releasing Hormone
(TRH).(26,111) Although TRH-containing neurons are widely distributed throughout the brain,(241,242) TRH neurons in the PVN project uniformly to
the median eminence,(243,244) a neurohemal organ connected to the anterior pituitary gland by the hypothalamic-pituitary-portal vessels,(38) and are
the only TRH neurons to regulate the pituitary-thyroid axis.(28,245)

2. TRH is delivered by the pituitary-portal vasculature to the anterior pituitary gland to stimulate the synthesis and release of Thyroid Stimulating
Hormone (TSH) or “Thyrotropin.”(246) TRH selectively stimulates the synthesis of the TSH beta subunit.(246) However, TRH also affects the post-
translational glycosylation of TSH, which affects its biological activity.(247−252)

3. Pituitary TSH is one of three glycoprotein hormones of the pituitary gland and is composed of an alpha and a beta subunit.(253) All three pituitary
glycoproteins (Luteinizing Hormone, LH; Follicle Stimulating Hormone, FSH; and TSH) share the same alpha subunit.(254) Pituitary TSH binds to
receptors on the surface of thyroid follicle cells stimulating adenylate cyclase.(17,253) The effect of increased cAMP is to increase the uptake of iodide
into thyroid cells, iodination of tyrosyl residues on TG by thyroperoxidase, synthesis and oxidation of thyroglobulin (TG), TG uptake from thyroid
colloid, and production of the iodothyronines T4 and T3. T4 is by far the major product released from the thyroid gland.(17)

4. Thyroid hormones are carried in the blood by specific proteins. In humans, about 75% of T4 is bound to thyroxine-binding globulin (TBG), 15%
is bound to transthyretin (TTR), and the remainder is bound to albumin.(255) TBG, the least abundant but most avid T4 binder, is a member of a
class of proteins that includes Cortisol Binding Protein and is cleaved by serine proteases in serum.(256) These enzymes are secreted into blood during
inflammatory responses and, in the case of CBP, can induce the release of cortisol at the site of inflammation. The physiological significance of this
observation is presently unclear for TBG.(255)

5. Thyroid hormones (T4 and T3) exert a negative feedback effect on the release of pituitary TSH(21,23,257) and on the activity of hypothalamic TRH
neurons.(24,26,258) Although it is clear that thyroid hormone regulates the expression of TSH(259−261) and TRH(24,26,110,111) in a negative feedback
manner, it is also clear that the functional characteristics of negative feedback must include more than simply the regulation of the gene encoding
the secreted protein/peptide. In addition, fasting suppresses the activity of TRH neurons by a neural mechanism that may involve leptin.(262,263) This
fasting-induced suppression of TRH neurons results in the reduction of circulating levels of thyroid hormone. Because circulating levels of T4 and of
T3 fluctuate within an individual (pulsatile release), and because the radioimmunoassays for T4 and for T3 are associated with a fairly high intra-assay
coefficient of variation, TSH measurements are considered to be diagnostic of thyroid dysfunction.(21,257,264)

6. T4 and T3 are actively transported into target tissues.(98,265−272) T4 can be converted to T3 by the action of outer-ring deiodinases (ORD, Type I and
Type II).(273) Peripheral conversion of T4 to T3 by these ORDs accounts for nearly 80% of the T3 found in the circulation.(257)

7. Thyroid hormones are cleared from the blood in the liver following glucuronidation by UDP-glucuronosyl transferase.(173,174) These modified
thyroid hormones are then eliminated through the bile.
8. T4 and/or T3 are actively concentrated in target cells about 10-fold over that of the circulation, although this is tissue-dependent.(98) The receptors
for T3 (TRs) are nuclear proteins that bind to DNA and regulate transcription.(88−90,99,274) There are two genes that encode the TRs, c-erbA-alpha
(TRα) and c-erbA-beta (TRβ). Each of these genes is differentially spliced, forming three separate TRs, TRα1, TRβ1, and TRβ2. The effects of
thyroid hormone are quite tissue-, cell-, and developmental stage-specific and it is believed that the relative abundance of the different TRs in a
specific cell may contribute to this selective action.
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at 10–12 weeks.(53) In addition, human fetal brain tis-
sues express receptors for TH, and receptor occu-
pancy by TH is in the range known to produce physio-
logical effects as early as nine weeks of gestation.(54,55)

Finally, the mRNAs encoding the two known TH
receptor types exhibit complex temporal patterns of
expression during human gestation.(56) These data in-
dicate that maternal TH is delivered to the fetus be-
fore the onset of fetal thyroid function and that the
minimum requirements for TH signaling are present
at this time. The functional importance of TH in fetal
brain development has been recognized more slowly,
in part because of the difficulty in correlating what are
sometimes subtle differences in maternal TH concen-
trations with pregnancy outcome.

3.3. Maternal Thyroid Hormones During Pregnancy

The clinical condition of cretinism is the most
profound consequence of maternal and neonatal
hypothyroidism. There are two forms of cretinism
based on clinical presentation.(57,58) Neurological
cretinism is characterized by extreme mental re-
tardation, deaf-mutism, impaired voluntary motor
activity, and hypertonia.(57) In contrast, myxedema-
tous cretinism is characterized by less severe mental
retardation and all the major clinical symptoms of
persistent hypothyroidism.(57) Iodide administration
to pregnant women in their first trimester eliminates
the incidence of neurological cretinism in geographic
areas that are severely iodine insufficient. However,
by the end of the second trimester, iodine supplemen-
tation does not prevent neurological damage.(58,59)

Several detailed studies of human populations living
in geographic regions of severe iodine deficiency
have led to the proposal that the various symptoms of
the two forms of cretinism arise from TH deficits that
occur during different developmental “windows of
vulnerability.”(57) These studies clearly indicate that
TH plays an important role in brain development
during fetal development and perhaps before the
onset of fetal thyroid function.

Cretinism is an example of severe TH deficits,
and the studies and observations mentioned above
have contributed greatly to our understanding of
the effects of TH on brain development in humans.
The effects of subtle, undiagnosed, or subclinical hy-
pothyroidism during pregnancy has been much more
difficult to relate to pregnancy outcome. The concept
and definition of maternal hypothyroxinemia was de-
veloped in a series of papers by Man et al.(60−65) Early
definition of maternal hypothyroxinemia was defined
empirically—those pregnant women with the lowest

butenol-extractable iodine (BEI) among all pregnant
women.(63,66) This work was among the first to report
an association between low circulating T4 in pregnant
women and neurological function of the offspring.
Pop et al.(67) later reported that the presence of
antibodies to thyroid peroxidase in pregnant women,
independent of TH levels per se, was associated with
significantly lower IQ in their offspring. In addition,
subsequent studies have shown that for pregnant
women with undiagnosed hypothyroidism, the chil-
dren born to women with T4 levels in the lowest 10th
percentile of the normal range had a higher risk of low
IQ and attention deficit.(10) These studies also demon-
strate that neonatal T4 levels are not indicative of fetal
thyroid status. Excellent recent reviews discuss these
studies in detail.(41,66,68,69) Taken together, these data
present strong evidence that maternal TH plays a role
in fetal brain development prior to the onset of fetal
thyroid function. In addition, these data indicate that
the consequences to the offspring of even mild and
transient maternal TH deficits during pregnancy are
neurological and irreversible.(7,8,33,37,70−72) However,
despite the increased awareness of the importance of
TH during fetal brain development, little is known
about the mechanisms by which TH affects the fetus.

4. MECHANISM OF THYROID HORMONE
ACTION ON BRAIN DEVELOPMENT

4.1. The Rat as a Model of Thyroid Hormone
Action on Brain Development

Many features of the rodent endocrine system
make the rat model particularly well suited for
experimental studies. Aside from the obvious similar-
ities in the chemistry of TH and dynamic interactions
among the levels of the hypothalamic-pituitary-
thyroid (HPT) axis,(73) many of the details of the HPT
axis in rodents are similar to those in humans. For ex-
ample, TR expression is measurable in rat brain early
in development.(54,74,75) Thyroid hormone from ma-
ternal circulation reaches the fetus,(76−80) and recent
studies indicate that TH exerts effects on fetal brain
development that affect behaviors in the adult.(81) The
validity of the rat as a model for the effects of TH on
brain development has been recently reviewed.(82−85)

4.2. Thyroid Hormone Receptors are Nuclear
Transcription Factors

It is generally believed that the majority of biolog-
ical actions of TH are mediated by their receptors—
nuclear proteins that interact mainly with T3.(86,87)

Thyroid hormone receptors (TRs) are members of
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the steroid/thyroid superfamily of ligand-dependent
transcription factors,(88−90) indicating that effects on
gene expression mediate the majority of biological
actions of TH. TRs are encoded by two genes, des-
ignated alpha- and beta- c-erbA.(91,92) These two
genes produce three functional TRs by alternate exon
usage: TRα1, TRβ1, and TRβ2.(93−97) Although there
are several TR isoforms, the binding affinity for T3 and
for T4 is not different among the various forms.(98−100)

Thus, it is not possible to discriminate between TR
isoforms by evaluating binding to T3. However, the
TRs exhibit a 50-fold greater affinity for T3 than for
T4, making T3 the physiologically important regula-
tor of TR action. In addition, there are ligands that
exhibit binding characteristics that differ among the
TR isoforms.(101−104)

4.3. Thyroid Hormone Exerts Tissue- and
Cell-Type-Specific Effects

Although the responsiveness to TH requires the
presence of nuclear TRs, the effects of TH vary from
tissue to tissue, even among those tissues that express
TRs.(105) Different levels and combinations of TR
isoform expression may account in part for this ob-
servation,(88,89) but cannot account for all tissue vari-
ability in responsiveness to TH. For example, most
patients with TH resistance syndromes exhibit a mu-
tation in the TRβ gene, but the phenotypes of in-
dividuals carrying the same mutation can be differ-
ent, indicating that other factors contribute to TH
actions.(106,107)

Thyroid hormone also exerts variable effects in
the brain. For example, TH exerts a negative tran-
scriptional effect on the gene encoding thyrotropin-
releasing hormone (TRH).(108) However, this
occurs solely in TRH-containing neurons in the
hypothalamic paraventricular nucleus (24,109,110) de-
spite the widespread distribution of cells expressing
TRH(111) and those expressing TR.(112) This is true
also for the gene coding for RC3/Neurogranin,
a well-characterized TH-responsive gene in the
developing and adult brain.(113,114) RC3/Neurogranin
is expressed with TR in many brain areas, but is
regulated by TH in a small subset of these areas.(115)

Thus, it is unlikely that TH regulation of a specific
gene will always be a marker of TH action; rather,
studies must focus on the proper gene expressed in
specific brain regions at the correct developmental
time. An extension of this conclusion is that TH exerts
differential effects on developmental processes in
different parts of the developing brain and, likely, at
different times during development. However, from

a toxicological perspective, these selective effects of
TH provide a powerful argument for the ability of an
exogenous chemical to interfere with, or mimic, TH
action.(116)

4.4. TRs Exhibit Specific Temporal and Spatial
Patterns of Expression During
Brain Development

Young and colleagues(74) demonstrated that the
α− and β−TRs exhibit distinct temporal and spa-
tial patterns of expression in the developing rat CNS.
TRβ1 is expressed in the ventricular zone of the
cerebral cortex early in development, and TRα1 is
expressed in more superficial layers. Because the ven-
tricular zone of the developing cortex contains neu-
ral progenitor cells undergoing cell division and the
initial stages of fate specification,(117) this suggests
that check points of cell division and events con-
tributing to fate specification may be affected by
TH and mediated by the TRβ1. In contrast, TRα1
may selectively mediate effects of TH on elements
of migration, differentiation, and synaptogenesis be-
cause neurons of the cortical plate are undergoing
these processes.(118) Thus, TH may influence differ-
ent developmental processes by different TR isoforms
before the fetal thyroid system begins to function
on G 17–20.(119)

4.5. TR Function is Modulated by Interactions
with Two Types of Regulatory Proteins

Two additional characteristics of the TRs con-
tribute to the mechanisms governing TH action, which
contribute to the observed pleiotropic effects. First,
TRs can interact with distinct nuclear receptors in-
cluding those for retinoids (retinoic acid receptors,
RARs, and retinoid X receptors, RXRs).(86,88,90) Thus,
an individual TR protein can dimerize with an indi-
vidual RAR or RXR, forming a heterodimer pair.
Interestingly, the type of dimer (TRα1 or TRβ1 homo-
or heterodimer, or TRα1/RAR, etc.) contributes to
the mechanism by which a specific gene is targeted
for regulation.(90) Second, the ability of TRs to af-
fect gene transcription requires them to interact with
nuclear co-factors, which are requisite mediators of
ligand-dependent transcriptional activation or repres-
sion of hormone responsive genes.(120−123) Co-factors
are believed to remodel local chromatin structure en-
abling nuclear receptors to activate or repress gene
regulation. Generally, the specific recruitment of a co-
factor complex with histone acetyltransferase activity
appears to play a regulatory role in activating gene
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transcription, whereas the recruitment of a co-factor
complex with histone deacetylase activity appears to
play a regulatory role in gene repression.(124) There-
fore, the sensitivity of a specific gene to regulation
by TH may be modulated by the abundance and
combination of heterodimer partners and of specific
co-factors.

Two kinds of observations support the hypothe-
sis that changes in cellular levels of specific co-factors
modulate cellular responsiveness to steroid/thyroid
hormones. First, ligand-dependent transcriptional ac-
tivation by one nuclear receptor can be inhibited
by ligand activation of another nuclear receptor in
vitro, even though this second receptor does not di-
rectly regulate the affected gene (i.e., transcriptional
squelching(125,126)). This observation indicates that
nuclear receptors compete for available co-factors,
which, if they are in limited supply, will attenuate
the efficacy of hormone-dependent activation of gene
expression. Second, overexpression of the co-factor
SRC-1 in a human breast cancer cell line (MCF-7
cells) results in an increase in the mitogenic re-
sponse to estrogen.(127) Thus, the sensitivity of a
cell to a specific level of hormone may be deter-
mined, at least in part, by the availability of specific
co-factors.

There are two categories of nuclear recep-
tor co-factors in general: co-repressors and co-
activators.(120,128) In the absence of TH, TRs are able
to repress basal transcription via recruitment of the
co-repressors SMRT or NCoR.(129,130) In contrast,
in the presence of TH, TRs release the bound
co-repressor and recruit a co-activator complex that
can include SRC-1.(130,131) The ligand-independent
repression of basal transcription by TRs appears to
account for the observation that TR knock-out mouse
models exhibit a relatively mild phenotype compared
to animals rendered hypothyroid using goitrogens or
surgical thyroidectomy.(132−135) Specifically, because
the TR appears to be a constitutive repressor in
the absence of TH as ligand, the unliganded TR is
predicted to be more damaging to brain development
than the loss of the receptor entirely. This hypothesis
is strongly supported by Hashimoto et al.,(136) who
generated a TRβ1 knock-in mutant mouse express-
ing a TRβ1 unable to bind TH. These homozygous
mutant mice exhibited severe neurological deficits
that resembled hypothyroidism in wild-type mice.

Taken together, these data indicate that TH ac-
tion on gene expression—and on specific develop-
mental events—are likely to be highly pleiotropic. The
effects of TH on the expression of an individual gene,

or on specific developmental processes, will be spa-
tially and temporally tailored. Therefore, studies de-
signed to identify endpoints of thyroid toxicity during
development must address this specificity; failure to
consider this specificity will likely fail to identify reli-
able endpoints. However, rather than being a liability,
the pleiotropic effects of thyroid hormone can pro-
vide significant strength in testing hypothesis about
thyroid disruption.(116)

4.6. Developmental Processes Influenced
by Thyroid Hormone

Thyroid hormone is known to affect a number of
specific developmental processes, including neuronal
proliferation, differentiation, migration, and synap-
togenesis.(31,83−85,137) Much of this work has focused
on the post-natal rat. For example, Koibuchi and
Chin(83) provide a very clear and compelling argu-
ment for studying TH action on cerebellar develop-
ment, which is almost entirely derived post-natally in
the rodent.(138,139) However, it is essential that conclu-
sions about TH action on neurodevelopmental events
in the cerebellum not be extrapolated to other brain
regions at different developmental times. For exam-
ple, it is clear that TH affects proliferation of cerebel-
lar granule cells. This was first shown by Nicholson
and Altman(140) using 3H-thymidine labeling, and has
been shown by labeling with proliferating cell nuclear
antigen mRNA (A. Croci, unpublished). However,
our lab has not found that TH affects proliferation
of cortical neurons on G16, using BrdU labeling or
PCNA.(141) This single example clearly indicates that
global statements about TH action on brain develop-
ment should be avoided.

Because there is no a priori reason to predict
that TH affects specific developmental processes in
the early fetal cortex, we recently investigated TH ac-
tion before the onset of fetal thyroid function using a
broad empirical approach.(142) We used the technique
of mRNA differential display as a way of identifying
TH-responsive genes in the early fetal cortex, which
could then guide us in subsequent studies to identify
TH-regulated developmental processes. Our under-
lying rationale was that the lack of information about
the molecular mechanism(s) of TH action on fetal
brain development has two important consequences.
First, we have little appreciation for the molecular
events or developmental processes by which TH pro-
duces the effects observed in humans and animals dis-
cussed above. Second, we have no direct measures of
TH action in fetal brain that could be employed in
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studies of the neurodevelopmental consequences of
thyroid toxicants. Therefore, we cannot directly test
the hypothesis that specific chemicals can interfere
with TH action. Rather, we are forced to interpret in-
direct measures of thyroid toxicity, such as circulating
levels of TH and thyroid histopathology in terms of
neurodevelopment.

We focused on the embryonic day 16 (E16) fetus
because fetal thyroid function does not begin until
E17;(119) thus, the identified genes would be regulated
solely by maternal TH. In addition, E16 is the time
when most of the neurons of the cerebral cortex are
generated and begin to differentiate.(143) We surgi-
cally thyroidectomized female rats two weeks before
they were mated to allow TH to decline before preg-
nancy. Next, on E15, we administered two half-doses
of T4 (12.5 µg/kg each) so that the concentration of T4

in the dam’s blood would not be supraphysiological.
We reasoned that this combination of a physiological
dose of T4 and an acute injection paradigm would al-
low us to identify genes directly responsive to TH and
would be physiologically relevant.

We identified a number of genes expressed in the
fetal brain that appear to be responsive to maternal
TH. Two of these genes, encoding neuroendocrine-
specific protein-A (NSP-A)(144,145) and Oct-1,(146−148)

exhibited complementary responses to TH. Interest-
ingly, both Oct-1 mRNA and NSP-A mRNA are ex-
pressed exclusively in the ventricular zone of the
E16 cortex.(142,149) However, Oct-1 mRNA is ele-
vated by T4 injection, whereas NSP-A mRNA is sup-
pressed by TH. Oct-1 is a member of the POU-
domain family of transcription factors(146) implicated
in the control of neuronal proliferation. NSP-A is a
neural-specific protein associated with endoplasmic
reticulum that may be involved in the acquisition of
neuronal polarization and differentiation.(144,145,150)

These experiments demonstrated that TH of mater-
nal origin can affect gene expression in the fetus, and
they provide “biomarkers” of TH action in the fetal
brain.

These observations indicate that although we
know that TH is essential for normal brain develop-
ment, the developmental processes affected by TH,
the mechanisms by which TH affects these processes,
and the timing of TH action for any one developmen-
tal process are poorly understood. Moreover, there
are few studies that link TH action in the developing
brain with persistent adverse outcomes in the adult.
These data gaps produce a situation whereby eval-
uation of chemical agents for their ability to inter-
fere with the thyroid system during development is

compromised. The section below addresses this issue
specifically.

5. SPECIFIC CHALLENGES CONFRONTING
A RESEARCH PROGRAM EVALUATING
THYROID TOXICITY

A number of environmental chemicals have been
shown to affect the thyroid system,(151) and the study
of environmental goitrogenesis is well developed.(152)

However, all known thyroid toxicants have been iden-
tified by their ability to influence circulating levels of
TH and/or TSH because these are the principal tools
used to identify thyroid toxicants. Because there are
no validated markers of TH action independent of
circulating levels of hormones, chemicals that inter-
fere with TH action without affecting hormone levels
would not be detected.

In principle, the adverse effects of toxicant-
induced thyroid dysfunction would most effectively
be reflected in the specific effects of low or high cir-
culating concentrations of TH. This could be envi-
sioned as equivalent to the uterotrophic assay for
estrogens(153) or the Hershberger assay for andro-
gens(154) in which specific measurable endpoints (e.g.,
uterine weight) are highly sensitive to changes in cir-
culating levels of estrogens or androgens. For exam-
ple, one could imagine a dose response of T4 replace-
ment in hypothyroid dams or developing rat pups in
which a graded effect on specific developmental and
neurodevelopmental processes are measured. Ideally,
these endpoints would be known to reflect adverse
consequences in the adult brain. This kind of informa-
tion would provide the background to test whether
specific chemicals could affect circulating levels of
TH and, if so, whether these changes were linked to
measurable changes in specific developmental pro-
cesses. Moreover, this kind of information would pro-
vide the basis to design screens and tests for chemi-
cals that interfere with TH action, not simply thyroid
function.

Unfortunately, with very few exceptions(155) there
are almost no studies in rats in which a dose response
of TH is evaluated for its effects on brain develop-
ment. Rather, nearly all studies make use of potent
goitrogens such as propylthiouracil or methimazole
that reduce circulating levels of TH to very low or
undetectable levels.(31,82,156,157) These studies demon-
strate that severe maternal and neonatal hypothy-
roidism can reduce brain and body weight,(105) and
can affect a variety of histological characteristics of
the brain.(105,140,158) However, we do not know how
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Table I. A Partial List of Genes Known
to be Thyroid Hormone-Responsive in

Various Tissues at Different
Developmental Stages

Response to Thyroid
Tissue Gene Hormone Reference

Neonatal brain TRβ1 Increase 100
RC3/neurogranin Increase 113, 114, 225, 226
TRH Decrease 24, 26, 227
Myelin basic protein Increase 228, 229
Purkinje cell protein-2 Increase 230
Type II 5′-deiodinase Decrease 155

Fetal brain NSP/s-rex Decrease 231, 232
Oct-1 Increase 231, 232

Pituitary Growth hormone Increase 233
Beta-thrytropin Decrease 234

Heart Alpha-myosin heavy chain Decrease 235
SERCA2 Increase 236

Skeletal muscle Alpha-myosin heavy chain Decrease 235
Liver Malic enzyme Increase 237, 238
Testes Androgen receptor Increase 239
Ovary Inhibin Decrease 240

sensitive these measures are to subtle changes in cir-
culating levels of TH.

Although individual clinical symptoms lack
definitive diagnostic value in humans, experimental
systems can be evaluated more thoroughly. Therefore,
it seems possible that endpoints of thyroid toxicity ex-
ist that could be identified for testing effects of thyroid
toxicity. It is known that TH dysfunction produces
deleterious effects on many organ systems, including
heart, muscle, liver, and brain. A partial list of TH-
responsive genes in these various tissues, which could
be used in toxicological studies, is shown in Table I.
However, few studies to date have begun to expand
the endpoints of thyroid toxicity for use in toxicolog-
ical studies. Moreover, although TH is well known
to affect metabolism,(159) body weight,(105) and sev-
eral aspects of behavior,(160−163) the smallest change
in TH required to observe significant effects on these
endpoints has not been determined. Thus, the end-
point that provides the lowest effect level for TH
itself has not been identified. Likewise in develop-
ment; TH is known to be essential for brain de-
velopment, but experimental studies focus on un-
derstanding the developmental consequences of TH
action(140,164−167) and the mechanisms by which TH
acts.(83,85,142,168)

6. TWO EXAMPLES OF THYROID TOXICITY
AND THE INTERPRETATION
OF THEIR EFFECTS

A broad range of chemicals is known to affect the
thyroid system at different points of regulation.(151)

Some chemicals selectively interfere with TH syn-
thesis, where others may selectively affect metabolic
clearance, serum transport, elimination, or, in prin-
cipal, cellular uptake, hormone action, or combina-
tions of these processes. For example, perchlorate
(ClO4) is an anion that competes for iodide uptake
into the thyroid gland via the sodium/iodide sym-
porter (NIS).(169,170) Because ClO4 blocks iodide up-
take, it reduces TH synthesis and circulating levels
of TH. Therefore, perchlorate is expected to produce
deleterious effects on an organism solely by reducing
TH synthesis and release. In contrast, polychlorinated
biphenyls (PCBs) appear to affect the thyroid system
at several levels.(171) Specifically, PCBs enhance liver
metabolism of TH,(172−175) increasing biliary excre-
tion.(176,177) PCBs interfere with T4 binding to serum
proteins,(178−181) which may also reduce circulating
levels of TH. And, PCBs may affect cellular uptake of
T3 and/or T3 binding to the nuclear receptor.(182−184)

Therefore, changes in circulating levels of TH may
not be the most sensitive measures of PCB actions on
thyroid toxicity. The discussion below is focused on
these two examples of thyroid toxicity, perchlorate
and PCBs, illustrating the difficulties in interpreting
these studies within a risk assessment paradigm, and
highlighting the need for the development of valid
endpoints of thyroid toxicity.

6.1. Perchlorate

Ammonium perchlorate is the principal oxidant
for solid propellants in the defense industry.(185,186)

Perchlorate contamination of groundwater across the
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United States has recently become apparent(187) and,
therefore, it is important to determine the level of per-
chlorate in drinking water that produces an adverse
effect in humans. Perchlorate inhibits iodide uptake
into the thyroid gland by the sodium/iodide symporter
(NIS).(170) This action of perchlorate was the basis of
its clinical use in the treatment of hyperthyroidism
and its potential toxicity as an environmental contam-
inant. To establish the dose response in humans for
perchlorate inhibition of thyroidal iodide uptake, and
short-term effects on circulating TH, Greer et al.(188)

gave perchlorate in drinking water at 0.007, 0.02, 0.1,
or 0.5 mg/kg per day to 37 male and female volunteers
for 14 days. In 24 subjects, 8- and 24-hr measurements
of thyroidal 123I uptake (RAIU) were performed be-
fore exposure, on exposure days 2 and 14 (E2 and
E14), and 15 days post-exposure (P15).

In general, these studies allowed the estimation
of a true no-effect level of perchlorate of 5.2 or
6.4 µg/kg/day. Considering that a 70 kg adult drinks 2
liters of water per day, this dose would be consumed
if the drinking water contained 182–224 ppb. In ad-
dition, even the dose of 0.5 mg/kg/day taken for 14
days did not produce changes in circulating levels of
T4 or TSH. Thus, perchlorate levels of 17.5 ppm in
drinking water would not be expected to alter cir-
culating levels of T4 or TSH within a 14-day period
even if the adult consumed 2 liters per day. Based on
these studies, Greer et al. concluded that perchlorate
concentrations of 180–220 ppb (and possibly higher)
should be of no health concern in iodine-sufficient
populations.(188) Although this conclusion is defensi-
ble for normal, euthyroid adults, several key aspects of
the normal adult thyroid system are significantly dif-
ferent in neonates, which reduces the confidence in
this conclusion as it applies to a significant proportion
of the normal human population—fetuses, neonates,
and infants.

Specifically, Greer et al.(188) postulated that
0.5 mg/kg/day of perchlorate failed to influence cir-
culating levels of TH in healthy adults in 14 days of
exposure because the normal adult thyroid gland con-
tains a very large storage capacity of unreleased TH.
In fact, these authors estimate that there should be
sufficient hormone stored in the thyroid gland to last
for several months. The case is quite different for a late
gestation fetus or neonate. Vulsma et al.(189) estimated
that the neonatal thyroid gland contains TH equiva-
lent to only a single day’s secretion. This estimate was
revised by van den Hove et al.,(190) who empirically
measured intrathyroidal stores of TH in human fe-
tuses and neonates and found that the amount of hor-

mone stored in the colloid is less than that required
for a single day. Thus, the concentration of perchlorate
sufficient to reduce thyroidal iodine uptake in a fetus
or neonate may be sufficient to produce a significant
decrement in circulating levels of TH.

Two additional characteristics unique to children
should be considered when applying data obtained
from normal adults to the potential developmen-
tal consequences. First, perchlorate may be concen-
trated in milk. Perchlorate acts on the NIS,(170) a
protein that is induced in lactating breast tissue by
prolactin.(191−194) Thus, it is possible that perchlo-
rate is concentrated in milk.(195,196) However, there
are no studies to determine the relationship between
maternal perchlorate consumption, maternal serum
perchlorate concentration, and the concentration of
perchlorate in milk. Therefore, the relationship be-
tween perchlorate intake in nursing mothers and the
dose of perchlorate presented to her infant has not
been empirically determined. Minimally, it is clear
that perchlorate will reduce iodide uptake into milk,
thus reducing the sole source of iodine to the in-
fant. Second, a short period of TH insufficiency may
produce permanent neurological deficits in children.
Van Vliet reviewed the evidence that a period of
TH insufficiency of as little as 14 days may be long
enough to produce permanent neurological deficits in
neonates.(37)

Thus, there are known differences in the thy-
roid system between normal euthyroid adults and
normal euthyroid newborns and infants that must
be considered when interpreting data derived from
adult humans. In addition, it is likely that adults
can recover from periods of transient hypothyroxine-
mia without permanent health consequences.(197) In
contrast, there is good evidence that the developing
brain is quite sensitive to periods of hypothyroxine-
mia and that the consequences are permanent. For
example, long-term studies of children with congen-
ital hypothyroidism that have been treated with T4

replacement indicate that very subtle differences in
circulating levels of T4 are associated with significant
differences in intellectual performance later in life.(1,2)

These differences indicate that experimental studies
must be performed to address specific neurodevelop-
mental effects of thyroid toxicants.

Two experimental studies have focused on the
developmental effects of perchlorate in rat(198) and
in rabbit.(199) In a two-generation rat study,(198) adult
Sprague-Dawley rats were provided with drinking wa-
ter containing target doses of perchlorate of 0, 0.3,
3.0, and 30.0 mg/kg per day. The F1 generation was
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maintained on this drinking water after weaning. Re-
productive effects were not observed. Microscopic
changes in thyroid structure were observed that in-
creased in incidence and severity with increasing dose.
Moreover, dose-related changes in TSH and T4 or
T3 were observed at doses of ammonium perchlorate
that were higher than the doses producing significant
effects on thyroid histology. Based on these findings,
the authors concluded that the no observable adverse
effect levels (NOAEL) was 0.3 mg/kg-day.

In the development study performed in rab-
bits,(199) does were given continual access to ammo-
nium perchlorate in drinking water at target doses
of 0, 0.1, 10.0, 30.0, and 100.0 mg/kg per day on ges-
tation days 6 through 28. The does were euthanized
on gestation day 29 and fetuses were examined for
developmental effects of treatment. Serum TSH, T4,
and T3 were measured in the does, and the mater-
nal thyroid gland was evaluated microscopically. No
effects of treatment were observed on gross inspec-
tion of the fetuses (e.g., litter size and weight, etc.).
The maternal thyroid gland exhibited an increased
incidence of thyroid follicular hypertrophy at doses
of 10 mg/kg per day and above. Serum T4 was signifi-
cantly decreased in animals treated with 30 mg/kg/day
and above. Based on these observations, the authors
estimated the NOAEL for developmental effects of
ammonium perchlorate at 100.0 mg/kg per day.

In principle, these experimental studies were de-
signed to address an important data gap that exists
when human studies are performed. Specifically, hu-
man studies cannot address the developmental effects
of potential thyroid toxicants because of clear eth-
ical considerations. However, considering the infor-
mation presented above on the role of TH in brain
development, it is not clear how the available pub-
lished literature on TH action in the developing brain
was considered to design studies of the developmental
toxicity of perchlorate. Nearly all the literature study-
ing the TH effects on brain development have been
performed using rodents; few if any have focused on
lagomorphs. Moreover, neither of these studies ex-
amined endpoints known to be directly affected by
TH, such as the expression of specific genes, cere-
bellar granule cell proliferation, apoptosis, or others.
Although the experimental literature does not pro-
vide clear examples of the different sensitivities of
various neurodevelopmental endpoints to TH, there
are many good examples of neurodevelopmental end-
points that could be employed in studies of the devel-
opmental consequences of known thyroid toxicants
such as ammonium perchlorate.

In the absence of specific neurodevelopmental
endpoints of TH action in a toxicological study, in-
vestigators are necessarily in the position of specu-
lating about the potential adverse effects of toxicants
using thyroid endpoints in dams and pups. These end-
points, as described above for perchlorate studies, are
serum concentrations of hormones (T4, T3, and TSH)
and thyroid histopathology. The challenge is to make
strong inferences about the potential developmental
effects on the developing brain based on circulating
levels of TH in the dam or in the pup. To categorize ob-
served changes in thyroid endpoints as reflecting com-
pensatory changes or adverse effects, the logic em-
ployed is based on the known negative feedback effect
of TH on the hypothalamic-pituitary axis. Clearly, the
negative feedback system of the HPT axis limits the
degree to which circulating levels of TH can change
under normal circumstances. However, it is not accu-
rate to assume that the negative feedback system pre-
vents adverse effects of persistent but small changes
in circulating levels of TH.

Consider the following. Circulating levels of TSH
will increase when the hypothalamic-pituitary system
detects a reduction, slight as it may be, in circulating
levels of TH. Therefore, if TSH levels are increased,
despite measuring “normal” levels of T4, it demon-
strates that T4 levels are in fact reduced. This may
also be true for changes in thyroid histopathology. In
the case of the two-generation reproduction study on
perchlorate,(198) thyroid histopathology appeared to
be a more sensitive indicator of perchlorate action on
the thyroid gland than did serum levels of T4 or TSH.
An important question is whether subtle reductions in
circulating T4 that trigger an increase in TSH release
in the dam (or pup) is detected as TH insufficiency in
other tissues, including the fetal brain.

Recent studies in humans support the interpreta-
tion that changes in TSH in the absence of alterations
in T3/T4 (i.e., subclinical hypothyroidism or hyper-
thyroidism) are associated with adverse health con-
sequences. Andersen et al.(15) demonstrated that in-
dividual variation in T4 levels are much more narrow
than the population variance in T4, which is the basis
for the normal reference range. Therefore, an indi-
vidual can experience a decline or excess in serum
T4 that significantly alters serum TSH, and still pos-
sess T4 levels within the normal range for the popu-
lation.(15) In addition, long-term follow-up studies of
patients given T4 replacement therapy following thy-
roid ablation for thyroid cancer or Grave’s disease(200)

indicate that these patients exhibit a much higher in-
cidence of cardiovascular disease. The interpretation
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is that chronic, sustained elevations in circulating lev-
els of T4 can produce adverse effects on the cardio-
vascular system. These studies indicate that relatively
small changes in circulating levels of TH, identified
by changes in serum TSH, do not reflect full com-
pensation for the original decrement in TH. Within
a toxicological framework, it is important to distin-
guish between this kind of compensation and a patho-
logical situation. The difficulty in making this distinc-
tion should not be underestimated. We know that the
beta-subtype of the TR mediates the negative feed-
back effect of TH on TRH/TSH.(201) Therefore, serum
TSH is a “biomarker” of TH action on the beta TR. In
contrast, there are no markers of TH action on the al-
pha receptor in a study of thyroid toxicity. Therefore,
it is an assumption that the hypothalamic-pituitary
axis is more sensitive to small changes in TH than are
other tissues, including those expressing the alpha re-
ceptor predominantly (e.g., heart) or in the develop-
ing brain. Attempting to infer adverse effects of even
slight reductions in circulating levels of T4 in dams
or in pups based on measures of thyroid function ap-
pears to be poorly supported by the kind of studies
required to make these inferences.

6.2. PCBs

Polychlorinated biphenyls are a class of industrial
compounds consisting of paired phenyl rings with var-
ious degrees of chlorination.(202) Before their produc-
tion was banned in the 1970s, over a billion kilograms
of PCBs were produced(203) and they are now ubiqui-
tous, persistent environmental contaminants that are
routinely found in samples of human and animal tis-
sues.(202,204) PCB mixtures or individual congeners can
reduce circulating levels of TH in animals to vary-
ing degrees.(172,205−209) The observation that PCBs
are found in human milk is of particular concern.
Concentrations of individual congeners reported for
milk samples taken from women exposed to back-
ground PCB levels and actively breast-feeding their
infants range from 38.3 ng/g of lipid(210) to 395 ng/g
of lipid.(211) These values correspond to approxi-
mately 1.28 µg/ml of milk (3.52 µM) to 13.2 µg/ml
of milk (36.3 µM).(212) Thus, the potential magnitude
of PCB exposure to infants through breast milk and
other sources justifies concern about potential effects
on development.

PCBs are known to be developmental neu-
rotoxicants at environmentally relevant concentra-
tions.(213−217) The most commonly noted neurological
abnormalities associated with low levels of PCB con-

tamination in humans are hypoactivity and impaired
learning.(204) Because the symptoms of PCB expo-
sure can overlap with those of thyroid dysfunction,
several investigators have speculated that the neuro-
logical consequences of incidental exposure to PCBs
are caused by disruption of the thyroid axis.(218,219)

For example, Osius et al.(220) recently studied 7- to 10-
year-old school children in three German municipali-
ties and found that serum concentrations of individual
PCB congeners were associated with circulating TSH.
In particular, they found a significant positive corre-
lation between the concentration of the mono-ortho
congener PCB 118 and TSH. Moreover, they found a
significant negative correlation between several PCB
congeners and free T3. There was no correlation be-
tween circulating levels of PCBs and T4. In contrast,
Koopman-Esseboom et al.(221) measured dioxins and
PCBs in human cord blood and breast milk and found
that PCB exposure, estimated by toxic equivalents
(TEQ), were negatively correlated with circulating T4

in infants. It is important to recognize that the differ-
ences in circulating levels of TH associated with PCBs
are still within the normal range. Therefore, there is
no evidence for overt hypothyroidism resulting from
background exposure to PCBs. However, this obser-
vation alone does not necessarily mean that there are
no adverse consequences of these associations (see
below). Specifically, the prediction that PCBs effec-
tively produce neurological deficits by producing hy-
pothyroidism may be wrong, but PCBs may still in-
terfere with TH action. The structure of some PCB
congeners may resemble that of TH enough to inter-
act with the TH receptor (TR),(222) acting as agonists,
antagonists, or mixed agonists.(223)

Because an effect on circulating levels of TH may
not accurately reflect an effect on TH action, we re-
cently tested the hypothesis that PCBs interfere with
TH action in the developing rodent brain. We initially
evaluated the effect of PCB exposure (Aroclor 1254)
on circulating levels of TH and on the expression of
TH-responsive genes in the developing brain.(116) We
found that A1254 reduces circulating levels of T4 to
below the detection limit for the radioimmunoassay,
but the TH-responsive genes RC3/Neurogranin and
myelin basic protein (MBP) were up-regulated as if
T4 levels were increased. Two elements of our re-
sults were consistent with a TH-like effect of A1254.
First, RC3/Neurogranin mRNA was elevated only in
those regions of the developing brain that others have
shown to be TH responsive.(115) In addition, single-
cell levels of RC3/Neurogranin mRNA were in-
creased, suggesting a transcriptional mechanism.(116)



154 Zoeller

We pursued this next in the fetal brain. We found that
A1254 had no effect on circulating levels of TH in the
dam, but increased RC3/Neurogranin mRNA in the
fetal brain (K. Gauger & C. Herzig, unpublished).

These findings demonstrate that PCBs can exert
effects on TH-responsive gene expression in the de-
veloping brain independent of effects on circulating
levels of TH. However, these studies do not remedy
the overall problem that changes in gene expression
are not likely to be considered to be an adverse effect.
Therefore, it is essential to identify valid biomarkers
of TH action that can be employed in toxicological
studies. For example, TH affects apoptosis of cerebel-
lar granule cells around post-natal day 8 in the rat,(224)

perhaps offering a valid toxicological endpoint.

7. CONCLUSIONS

Recent information about the clinical effects of
TH insufficiency clearly indicates that very small but
persistent changes can produce adverse effects in
adults and can produce permanent changes in brain
development. Considering these observations alone,
the present logic applied to thyroid toxicity data sets
should be reevaluated. First, the interpretation of
studies in normal adult humans must take into con-
sideration the differences between normal adults and
normal children in thyroid economy and in the rela-
tive sensitivity and reversibility of these different life
stages to TH insufficiency. Second, experimental stud-
ies must begin to identify and recruit endpoints of TH
action in the developing brain to test whether poten-
tial thyroid toxicants may produce adverse neurode-
velopmental effects through the TH signaling system.
Moreover, chemicals may exist that interfere with TH
action in the absence of effects on circulating levels
of TH. Risk analysis of potential thyroid toxicants,
in the absence of specific neurodevelopmental end-
points, must be viewed with caution as it relates to
childhood exposure of these chemicals.
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