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At the Cutting Edge

Environmental chemicals as thyroid hormone analogues:
New studies indicate that thyroid hormone receptors are

targets of industrial chemicals?
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Abstract

Thyroid hormone (TH) is essential for normal brain development, but the specific actions of TH differ across developmental time and brain
region. These actions of TH are mediated largely by a combination of thyroid hormone receptor (TR) isoforms that exhibit specific temporal
and spatial patterns of expression during animal and human brain development. In addition, TR action is influenced by different co-factors,
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proteins that directly link the TR protein to functional changes in gene expression. Several recent studies now show that TRs may be u
targets of chemicals manufactured for industrial purposes, and to which humans and wildlife are routinely exposed. Polychlorinated b
(PCBs), polybrominated diphenyl ethers (PBDEs), and bisphenol-A (BPA), and specific halogenated derivatives and metabolites
compounds, have been shown to bind to TRs and perhaps have selective effects on TR functions. A number of common chemicals
polybrominated biphenyls (PBBs) and phthalates may also exert such effects. Considering the importance of TH in brain develo
will be important to pursue the possibilities that these chemicals – or interactions among chemical classes – are affecting children’s
influencing TH signaling in the developing brain.
© 2005 Elsevier Ireland Ltd. All rights reserved.
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It has long been recognized that thyroid hormone (TH)
is essential for normal brain development in both humans
and in animals (Dussault and Ruel, 1987), but the mech-
anisms by which TH exerts its actions are only partially
understood (Bernal et al., 2003). Likewise, it has long been
recognized that there are environmental influences on thyroid
function (Gaitan, 1989), but our ability to identify environ-
mental factors that affect thyroid hormone action during brain
development may be limited by the lack of information about
thyroid hormone action in the developing brain (Zoeller,
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2003). Moreover, because all known “thyroid toxicants” hav
been identified solely by their ability to reduce circulatin
TH levels (Brucker-Davis, 1998), the default approach to
identify such chemicals is by their effects on hormone lev
and on thyroid histology (e.g., size of the colloid, qualitativ
appearance of hypertrophic or hyperplastic effects) (DeVito
et al., 1999). However, chemicals that act directly on thyroi
hormone receptors (TRs) may produce variable and perh
unpredicted effects on hormone levels as well as to prod
effects on brain development that incompletely mimic T
insufficiency (or action).

Despite early speculations that environmental chemic
may act as imperfect TH analogues (McKinney and Waller,
1994; McKinney and Waller, 1998), few studies had tested
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this hypothesis until recently. Now, several recent reports
show that a broad range of chemicals to which humans
are routinely, and inadvertently, exposed can bind to TRs
and may produce complex effects on thyroid hormone sig-
naling. Perhaps the best example is that of polychlorinated
biphenyls (PCBs), industrial chemicals consisting of paired
phenyl rings with various degrees of chlorination (Chana and
Concejero, 2002). Although the production of PCBs was
banned in the mid 1970’s, these contaminants are routinely
detected in the environment (Breivik et al., 2002) and in
human tissues (Fisher, 1999) at high concentrations. PCB
body burden is associated with lower full-scale IQ, reduced
visual recognition memory, attention deficits, and motor
deficits (Huisman et al., 1995; Jackson et al., 1997; Osius
et al., 1999; Korrick and Altshul, 1998; Ayotte et al., 2003;
Walkowiak et al., 2001).

PCBs reduce circulating levels of T4 in animals (Zoeller
et al., 2000; Goldey et al., 1995; Bastomsky, 1977a,b;
Bastomsky et al., 1976), and some authors propose that PCBs
exert neurotoxic effects on the developing brain by causing
a state of relative hypothyroidism (Crofton, 2004; Crofton
et al., 2000; Brouwer et al., 1999). This concept is supported
by the observations that the ototoxic effect of PCB exposure
can be partially ameliorated by T4 replacement (Goldey and
Crofton, 1998), and that the cerebellum, a tissue highly sen-
sitive to thyroid hormone insufficiency (Koibuchi and Chin,
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IC50as low as 5�M. In addition, using a human neuroprogen-
itor cell line,Fritsche et al. (2005)found that a specific PCB
congener could mimic the ability of T3 in increasing oligo-
dendrocyte differentiation, and that this effect was blocked
by the selective TR antagonist NH3. Finally,Arulmozhiraja
and Morita (2004)have identified several PCB congeners that
exhibit weak thyroid hormone activity in a yeast-two hybrid
assay optimized to identify such activity.

However, not all recent reports indicate that PCBs act
as agonists on the TR.Kimura-Kuroda et al. (2005)have
found that two separate hydroxylated PCBs interfere with
T3-dependent neurite outgrowth in mouse cerebellar gran-
ule cell primary cultures. In addition,Bogazzi et al. (2003)
found that a commercial mixture of PCBs (Aroclor 1254)
exhibited specific binding to the rat TR� at approximately
10�M. This concentration inhibited TR action on the malic
enzyme promoter in a CAT assay and this effect required
an intact TRE. However, the PCB mixture did not alter the
ability of TR to bind to the ME TRE in a gel shift assay. In
contrast,Iwasaki et al. (2002)found that a specific hydrox-
ylated PCB congener inhibits TR-mediated transcriptional
activation in a luciferase assay at concentrations as low as
10−10 M. This effect was observed in several cell lines, but
was not observed using a glucocorticoid response element.
Miyazaki et al. (2004)followed this report by showing that
PCBs can dissociate TR:RXR heterodimers from a TRE.
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000; Li et al., 2004; Yousefi et al., 2005), is targeted b
CB exposure. PCB exposure alters motor behavior as
ted with cerebellar function (Roegge et al., 2004; Nguo
t al., 2005), as well as cerebellar anatomy (Nguon et al.
005). Interestingly, PCB exposure is associated with

ncrease in expression of glial fibrillary acidic protein (GFA
Nguon et al., 2005), which is also increased by thyro
ormone insufficiency (Granholm, 1985). Finally, in young
hildren, the association between PCB body burden
ehavioral measures of response-inhibition is strong

hose children that have a smaller corpus callosum (Stewar
t al., 2003), an area of the brain affected by thyroid h
one (Traggiai and Stanhope, 2004; Schoonover et al., 2
erbel et al., 1994). Thus, it is possible that PCBs exert

east some neurotoxic effects on the developing cerebe
y causing a state of relative hypothyroidism.

However, PCB exposure does not produce consi
ffects on animals that are indicative of thyroid horm

nsufficiency, such as body weight gain during developm
Zoeller et al., 2000; Gauger et al., 2004; Bansal et
005) or the timing of eye opening (Goldey et al., 1995).

n addition, despite the reduction in serum T4, PCB expo
ure increases the expression of several thyroid horm
esponsive genes in the fetal (Gauger et al., 2004; Bans
t al., 2005) and neonatal (Zoeller et al., 2000) brain.
hese observations are consistent with the hypothesi
t least some individual PCB congeners, or their met

ites, can act as TR agonists in vivo. Recently,Kitamura
t al. (2005)reported on their observations that nine sepa
ydroxylated PCB congeners can bind to the rat TR wit
It is clear that PCBs are neurotoxic in humans and anim
nd that they can interact directly with the TR. However,
onsequences of PCB exposure on TR action appear
uite complex. This complexity includes acting as an a
ist or antagonist and may include TR isoform select

n as much as most studies have been performed usin
R�, leaving the TR� relatively unstudied in this context.
ddition, considering that there are 209 different chlorine
titution patterns on the biphenyl backbone and that thes
e metabolized (hydroxyl- and methylsulfonyl-metabol
Kato et al., 1998)), it is possible that different chemic
pecies exerts different effects. Finally, PCBs may exer
erent actions on TRs depending on associated hetero
artners, promoter structure, or different co-factors.
omplexity will be important to pursue because the effec
CB exposure in humans is far better studied than for s

urally related compounds such as polybrominated biphe
PBBs) and polybrominated diphenyl ethers (PBDEs). T
echanistic studies on PCBs can be more easily and

ively coupled to specific human health outcomes.
Bisphenol-A (BPA, 4,4′ isopropylidenediphenol) is pr

uced at a rate of over 800 million kg annually in the Un
tates alone (Reporter, 1999), and is used primarily in th
anufacture of plastics including polycarbonate plas
poxy resins that coat food cans, and in dental sealants (Howe
t al., 1998; Lewis et al., 1999). Howe et al. (1998)estimated
uman consumption of BPA from expoxy-lined food c
lone to be about 6.6�g/person-day. BPA has been repor

n concentrations of 1–10 ng/ml in serum of pregnant wom
n the amniotic fluid of their fetus, and in cord serum take
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birth (Schonfelder et al., 2002; Ikezuki et al., 2002). More-
over, BPA concentrations of up to 100 ng/g were reported
in placenta (Schonfelder et al., 2002). Bisphenol-A is also
halogenated (brominated or chlorinated) to produce flame-
retardants. Tetrabromobisphenol-A (TBBPA) is the most
commonly used with over 60,000 tons produced annually
(WHO, 1995; WHO, 1997). Thomsen et al. (2002)recently
reported that brominated flame retardants, including TBBPA,
have increased in human serum from 1977 to 1999 with con-
centrations in adults ranging from 0.4 to 3.3 ng/g serum lipids.
However, infants (0–4 years) exhibited serum concentrations
that ranged from 1.6 to 3.5 times higher (Thomsen et al.,
2002).

Considering this pattern of human exposure, it is poten-
tially important that BPA has been shown to bind to the
TR (Moriyama et al., 2002a). Best characterized as a weak
estrogen (Staples et al., 1998), binding to the estrogen recep-
tor (ER) with aKi of approximately 10−5 M (Krishnan et al.,
1993; Gaido et al., 1997), BPA binds to and antagonizes
T3 activation of the TR (Kitamura et al., 2002; Moriyama
et al., 2002b) with aKi of approximately 10−4 M, but as little
as 10−6 M BPA significantly inhibits TR-mediated gene
activation (Moriyama et al., 2002b). Moreover,Moriyama
et al. (2002a)found that BPA reduced T3-mediated gene
expression in culture by enhancing the interaction with the
co-repressor N-CoR. Interestingly; we have found that devel-
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Fig. 1. The current theory of thyroid hormone action on the TR allows us to
predict sites at which environmental chemicals may interfere with thyroid
hormone action. Chemicals may bind to the TR and directly activate or inhibit
the action of endogenous T3 (1). This action may occur by influencing the
interaction of TRs with various co-factors such as N-CoR or SRC-1 (2). In
addition, environmental chemicals may cause the TR to exhibit a different
affinity for the TRE (3). These effects may well be dependent upon the
specific TR isoform (TR� or TR� isoforms), the specific TRE or contextual
sequences of specific TREs, and/or the specific co-factors available in the
cell. It seems predictable that these chemicals will not produce patterns of
effects or disease that simply mimic thyroid hormone insufficiency or excess
and thus may easily be misinterpreted both in experimental animals and in
humans.

important during early brain development. For example, thy-
roid hormone of maternal origin can regulate gene expression
in the fetal brain (Dowling et al., 2000,2001; Dowling and
Zoeller, 2000); one of these genes codes for Hes1 (Bansal
et al., 2005). Considering the role of HES proteins in
fate specification in the early cortex (Wu et al., 2003;
Schuurmans and Guillemot, 2002; Gaiano and Fishell, 2002),
the observation that industrial chemicals can activate the TR
and increase HES expression (Bansal et al., 2005) may indi-
cate that these chemicals can exert subtle effects on early
differentiative events.

Conclusions

The human population is exposed to a large number of spe-
cific polyhalogenated aromatic hydrocarbons, and biomoni-
toring studies now detect these chemicals in adults, children,
pregnant women and in the fetal compartment (Takser et al.,
2005). Increasing numbers of reports are revealing that a
broad array of compounds can bind to the TR and affect TH-
regulated gene expression, both in vivo and in vitro. However,
considering the tremendously pleiotropic effects of thyroid
hormone, it is predictable that these synthetic compounds
may have very complex effects on the TR (Fig. 1). In addi-
tion, these studies suggest that chemicals may interact with
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pmental exposure to BPA in rats produces an endo
rofile similar to that observed in thyroid resistance s
rome (Cheng, 2005). Specifically, T4 levels were elevate
uring development in the pups of BPA-treated anim
ut TSH levels were not different from controls (Zoeller
t al., 2005). This profile is consistent with BPA inhibitio
f TR�-mediated negative feedback. However, the thy
ormone-response gene RC3 was elevated in the d
yrus of these BPA-treated animals (Zoeller et al., 2005).
ecause the TR� isoform is expressed in the dentate gy
e concluded that BPA may be a selective TR� antagonis

n vivo.
If BPA acts as a TR antagonist in vivo, it is predicta

hat specific developmental events and behaviors wou
ffected by developmental exposure to BPA. In this reg
eiwa et al. (2004)have shown that BPA blocks T3-induced
ligodendrocyte development from precursor cells (OP

n addition, there may be an association between the
oid resistance syndrome and attention deficit-hyperac
isorder (ADHD) in humans (Siesser et al., 2005; Vermigl
t al., 2004; Hauser et al., 1998) and in rats (Siesser et al
005) therefore, it is potentially important that BPA-expo
ats exhibit ADHD-like symptoms (Ishido et al., 2004).

Despite the antagonistic effects of BPA on the TR�, halo-
enated BPAs appear to act as TR agonists (Kitamura et al.
002). Both tetrabromo and tetrachlorobisphenol A (TBB
nd TCBPA, respectively) can bind to the thyroid horm
eceptor and induce GH3 cell proliferation and growth
one production (Kitamura et al., 2002). Thus, these com
ounds may exert agonistic effects on the TR and this cou
ther important TH binding proteins. For example, dei
ase enzymes appear to control the sensitivity of diffe
rain regions to TH exposure during development (Kester
t al., 2004); thus, if exogenous chemicals alter the activit

hese enzymes, it may influence the sequence of TH-sen
evelopmental events. Likewise, specific transporters a

o control the availability of T3 to cells in the brain (Friesema
t al., 2003; Heuer et al., 2005); thus, if environmental chem
als interfere with tissue uptake of TH, adverse human h
ffects could result. Our ability to identify chemical effe
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on TR function in vitro far exceeds our ability to identify
chemical effects on TR function in vivo, in part because the
mechanisms of TH action in the developing brain is less well
understood. However, it will be important to define the role
of TH in brain development and to identify the mechanisms
by which TH exerts these actions if we are to understand the
potential human health effects of persistent exposure to these
bioaccumulative compounds.
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