Thyroid Hormone Action in Fetal Brain Development and Potential for Disruption by Environmental Chemicals

R. THOMAS ZOELLER1 AND KEVIN M. CROFTON2*

1Biology Department, Morrill Science Center, University of Massachusetts, Amherst, MA, USA; 2Neurotoxicology Division, Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, U.S. Research Triangle Park, NC, USA

Abstract: Thyroid hormone is well-known to play essential roles in brain development. Therefore, environmental factors that interfere with thyroid function or thyroid hormone action may produce deleterious effects on brain development by interfering with thyroid hormone action in the developing brain. Therefore, the purpose of this review is to identify in broad terms the gaps in our knowledge of thyroid hormone action in brain development, to relate these gaps to present information on thyroid disruption, and to review briefly our recent research that is germane to these issues. The endocrinology of the thyroid system is first reviewed briefly with an emphasis on the neuroendocrine and extrathyroidal mechanisms controlling circulating levels of thyroid hormones. The second section reviews the evidence that thyroid hormone is important for fetal, as well as neonatal, brain development. We review the mechanism of thyroid hormone action in the third section and briefly relate this information to information about the mechanism of thyroid hormone action on brain development. In the final section, we review the endocrinology of thyroid disruption with an emphasis on disruption of thyroid hormone action. © 2000 Intox Press, Inc.

Key Words: Thyroid Hormone, Endocrine Disruptors, Brain Development

INTRODUCTION

There is increasing public concern that incidental exposure to environmental chemicals can disrupt hormone signaling during development, thereby causing permanent effects on brain development in humans and wildlife. These concerns are especially grave for disruption of thyroid hormone action because this hormone is an essential factor in normal brain development (Dussault and Ruel, 1987; Escobar et al., 1997; Myant, 1971; Porterfield and Hendrich, 1993; Timiras and Nzekwe, 1989). A growing scientific literature documents the association between concentrations of circulating thyroid hormone and exposure to specific environmental chemicals or chemical mixtures to which we are exposed in our environment. However, there are critical gaps in our understanding of thyroid hormone action on fetal brain development that severely limit our ability to attribute experimental or epidemiological observations to disruption of thyroid hormone action. Therefore, the purpose of this review is to identify in broad terms the gaps in our knowledge of thyroid hormone action in brain development, to relate these gaps to present information on thyroid disruption, and to review briefly our recent research that is germane to these issues.

THYROID ENDOCRINOLOGY

The iodothyronines are formed in the thyroid gland from two iodinated tyrosyl residues on the large hormone "precursor", thyroglobulin (TG) (Taurog, 1996). The most important iodothyronines are 3,5,3',5'-tetraiodothyronine (thyroxine, T4), 3,5,3'-triiodothyronine (T3), and 3,3',5'-triiodothyronine (reverse T3). Circulating triiodothyronines are formed largely from peripheral deiodination of T4, which is the major product released from the thyroid gland (Leonard and Koehrle, 1996). The pituitary glycoprotein...
FIG. 1. Basic elements of thyroid endocrinology. Numbers in filled diamonds refer to the legend below that provides descriptions of the specific level of the thyroid system.

1. Neurons whose cell bodies reside in the hypothalamic paraventricular nucleus (PVN) synthesize the tripeptide Thyrotropin-Releasing Hormone (TRH) (Segersen et al., 1987a; Segersen et al., 1987b). Although TRH-containing neurons are widely distributed throughout the brain (Jackson et al., 1985; Lechan et al., 1986), TRH neurons in the PVN project uniformly to the median eminence (Ishikawa et al., 1988; Merchenthaler and Liposits, 1994), a neurohemal organ connected to the anterior pituitary gland by the hypothalamic-pituitary-portal vessels (Martin and Reichlin, 1987), and are the only TRH neurons to regulate the pituitary-thyroid axis (Aizawa and Greer, 1981).

2. TRH is delivered by the pituitary-portal vasculature to the anterior pituitary gland to stimulate the synthesis and release of Thyroid Stimulating Hormone (TSH) or "Thyrotropin" (Haisenleder et al., 1992). TSH is one of three glycoprotein hormones of the pituitary gland and is composed of an alpha and a beta subunit (Wondisford et al., 1996a). All three pituitary glycoproteins (Luteinizing Hormone, LH; Follicle Stimulating Hormone, FSH; and TSH) all share the same alpha subunit (Hadley, 2000). TRH selectively stimulates the synthesis of the TSH beta subunit (Haisenleder et al., 1992). However, TRH also affects the post-translational glycosylation of TSH which affects its biological activity (Harel et al., 1993; Lippman et al., 1986; Magner et al., 1992; Taylor et al., 1986; Taylor and Weintraub, 1985; Weintraub et al., 1989).

3. Pituitary TSH binds to receptors on the surface of thyroid follicle cells and stimulates their activity (Taurog, 1996; Wondisford et al., 1996b). This activity includes uptake of iodide, iodide organification, synthesis and oxidation of thyroglobulin (TG), TG uptake from thyroid colloid and production of the iodothyronines T4 and T3. T4 is by far the major product released from the thyroid gland (Taurog, 1996).

4. Thyroid hormones are carried in the blood by specific proteins. In humans, about 75% of T4 is bound to thyroxine-binding globulin (TBG), 15% is bound to transthyretin (TTR) and the remainder is bound to albumin (Schussler, 2000). TBG, the least abundant but most avid T4 binder, is a member of a class of proteins that includes Cortisol Binding Protein and is cleaved by serine proteases in serum (Fink et al., 1986). These enzymes are secreted into blood during inflammatory responses and, in the case of CBP, can induce the release of cortisol at the site of inflammation. The physiological significance of this observation is presently unclear for TBG (Schussler, 2000), but it raises the possibility that TBG may selectively release of T4 under specific circumstances.

5. Thyroid hormones (T4 and T3) exert a negative feedback effect on the release of pituitary TSH (Chopra, 1996; Scanlon and Toft, 1996; Stockigt, 1996) and on the activity of hypothalamic TRH neurons (Koller et al., 1987; Rondeel et al., 1989; Segersen et al., 1987b). Because circulating levels of T4 and of T3 fluctuate considerably within an individual, and because the radioimmunoassays for T4 and for T3 are associated with a fairly high intra-assay coefficient of variation, TSH measurements are considered to be diagnostic of thyroid dysfunction (Chopra, 1996; Roti et al., 1993; Stockigt, 1996). T4 and T3 are actively transported into target tissues (Docter et al., 1997; Everts et al., 1994a; Everts et al., 1994b; Everts et al., 1995; Friesema et al., 1999; Kragie, 1996a; Kragie, 1996b; Moreau et al., 1999; Oppenheimer, 1983). T4 can be converted to T3 by the action of outer-ring deiodinases (ORD, Type I and Type II) (Germain and Galton, 1997). Peripheral conversion of T4 to T3 by these ORDs accounts for nearly 80% of the T3 found in the circulation (Chopra, 1996).

6. Thyroid hormones are cleared from the blood in the liver following glucuronidation by UDP-glucuronosyl transferase (Hood and Klaassen, 2000). These modified thyroid hormones are then eliminated through the bile. T4 and T3 are actively concentrated in target cells about 10-fold over that of the circulation. The receptors for T3 (TRs) are nuclear proteins that bind to DNA and regulate transcription (Lazar, 1993; Lazar, 1994; Mangelsdorf and Evans, 1995; Oppenheimer and Schwartz, 1997; Oppenheimer et al., 1994). There are two genes that encode the TRs, c-erbA-alpha (TRA) and c-erbA-beta (TRB). Each of these genes is differentially spliced, forming 3 separate TRs, TRa1, TRb1, and TRb2. The effects of thyroid hormone are quite tissue-, cell-, and developmental stage-specific and it is believed that the relative abundance of the different TRs in a specific cell may contribute to this selective action.
hormone, thyrotropin (TSH) (Wondisford et al., 1996b), regulates the synthesis and secretion of thyroid hormones by activating guanylate cyclase in thyroid follicular cells (Rapoport and Spaulding, 1986). However, there are a number of important extrathyroidal processes that maintain circulating thyroid hormones within a relatively narrow concentration range (Leonard and Koehrle, 1996). Normal variation in circulating concentrations of T₄ reflects short-term pulsatile and diurnal variation (Stockigt, 1996). T₃ and/or T₄ exert a negative feedback effect on pituitary secretion of TSH (Morley, 1981; Scanlon and Toft, 1996), and on the hypothalamic secretion of the releasing factor, thyrotropin-releasing hormone (TRH) (Koller et al., 1987; Rondeel et al., 1988; Segersen et al., 1987b), which controls the amount of TSH in the blood. Finally, TRH from the hypothalamus stimulates the pituitary gland to release TSH (Jackson and Lechan, 1983), and modulates the sensitivity of the pituitary gland to negative feedback by thyroid hormone (Greer et al., 1993; Taylor et al., 1990). Thus, circulating levels of thyroid hormones, and the balance between different forms of these hormones, are controlled by a number of processes (Figure 1).

THYROID HORMONE AND FETAL BRAIN DEVELOPMENT

Despite early work suggesting that the human placenta is impermeable to maternal thyroid hormones (Fisher et al., 1977), it is now well accepted that iodothyronines of maternal origin reach the fetal compartment (Porterfield, 1994; Porterfield and Hendrich, 1993; Porterfield and Stein, 1994). Several recent observations account for this change in perception. First, thyroid hormones have been detected in human coelomic and amniotic fluids as early as 8 weeks of gestation, before the onset of fetal thyroid function (Clasen, 1977; Segersen et al., 1999; Thiel et al., 1999). Extensive reviews on this issue have been recently published (Delange, 1996; Escobar et al., 1997; Porterfield, 1994; Porterfield and Hendrich, 1993; Porterfield and Stein, 1994). It is clear that the fetus is equipped with a variety of mechanisms to obtain and maintain exposure to maternal thyroid hormones even before the onset of fetal thyroid function, including increased uptake and conversion of T₄ to T₃ (Calvo et al., 1992; Escobar et al., 1997). These data present strong evidence that maternal thyroid hormone play a role in fetal brain development prior to the onset of fetal thyroid function, and that the consequences of thyroid hormone deficits or disruption during pregnancy are neurological and irreversible (Dussault and Walker, 1983; Foley, 1996; Gupta et al., 1995; Klett, 1997; Miculan et al., 1993; Vanderschueren-Lodeweyckx et al., 1983; Vlieet, 1999). However, this view is not uniformly held (Fisher, 1999; Schwartz et al., 1997).

MECHANISM OF THYROID HORMONE ACTION

It is generally held that the majority of biological actions of thyroid hormone are mediated by nuclear receptors for T₃ (Lazar, 1993; Lazar, 1994). T₃ receptors (TRs) are members of the steroid/thyroid superfamily of ligand-dependent transcription factors (Lazar, 1993; Lazar, 1994; Mangelsdorf and Evans, 1995), indicating that effects on gene expression mediate the majority of biological actions of thyroid hormone. TRs are encoded by two genes, designated α and β-cerbA (Sap et al., 1986; Weinberger et al., 1986). These two genes produce three functional TRs: TRα1, TRβ1, and TRβ2 (Hodin et al., 1989; Izumo and Mahdavi, 1988; Koenig et al., 1988; Murray et al., 1988; Thompson et al., 1987). Although there are several TRs expressed, the binding affinity for T₃, and for T₄, are not different among the various forms (Oppenheimer, 1983; Oppenheimer et al., 1994; Schwartz et al., 1992). These studies demonstrate that TRs exhibit a 10-fold greater affinity for T₃ than for T₄, and that T₃ is the physiologically important regulator of TR action.
However, TRα1 and TRβ1 exhibit different profiles of binding to the thyroid hormone analogue desethylamioderone (Bakker et al., 1994; Beeren et al., 1995). Therefore, it is possible that other exogenous compounds, specifically environmental chemicals, may bind differentially to these two TRs.

Despite the observation in rats that TRs are expressed in fetal brain (Bradley et al., 1992; Bradley et al., 1989; Falcone et al., 1994; Perez-Castillo et al., 1985; Strait et al., 1990), and that maternal T4 can cross the placenta and be converted to T3 (Calvo et al., 1990; Contempre et al., 1993; Escobar et al., 1990; Escobar et al., 1997; Vulsma et al., 1989), few thyroid hormone-responsive genes have been identified in the fetus. In truth, remarkably few studies have even examined thyroid hormone responsiveness of the fetal brain (Bonet and Herrera, 1988; Escobar et al., 1997; Escobar et al., 1988; Geel and Timiras, 1967; Hadjzadeh et al., 1989; Porterfield, 1994; Porterfield and Hendrich, 1993). The lack of information concerning molecular mechanism(s) of thyroid hormone action on brain development has two important consequences. First, we have little appreciation for the molecular events or developmental processes by which thyroid hormone produces the effects observed in humans and animals briefly discussed above. Second, we have no direct measures of thyroid hormone action in fetal brain. Therefore, we cannot directly test the hypothesis that specific chemicals can interfere with thyroid hormone action because the only measures available are indirect such as thyroid hormone concentration in serum or in specific tissues.

To address this weakness, we recently initiated a study to test the hypothesis that maternal thyroid hormone can influence gene expression in the fetal rat brain (Dowling et al., 2000). Our strategy was to identify genes in the fetal cortex that are responsive to acute manipulation of maternal thyroid status. We focused on the embryonic day 16 (E16) fetus because fetal thyroid function does not begin until E17 (Fisher et al., 1977); thus, these genes would be regulated solely by maternal thyroid hormone. In addition, E16 is the time when most of the neurons of the cerebral cortex are generated and begin to differentiate (Bayer and Altman, 1995). Our paradigm for thyroid hormone manipulation was also novel among studies designed to identify thyroid hormone-responsive genes. For example, we surgically thyroidectomized female rats two weeks before they were mated to allow thyroid hormones to decline before pregnancy. Next, on G15, we administered two half-doses of T4 (12.5 µg/kg each) so that the concentration of thyroid hormone in the dam’s blood would not be supraphysiological. We reasoned that this combination of a physiological dose of T4 and an acute injection paradigm would allow us to identify genes directly responsive to thyroid hormone and would be physiologically relevant.

We identified a number of genes expressed in the fetal brain that appear to be responsive to maternal thyroid hormone. Two of these genes, encoding neuroendocrine-specific protein (NSP) (Velde et al., 1994a; Velde et al., 1994b) and Oct-1 (Dominov and Miller, 1996; Kambe et al., 1993; Suzuki et al., 1993), exhibited complementary patterns of expression in the fetal brain and responses to thyroid hormone. Oct-1 mRNA is elevated by T4 injection and is expressed selectively in the periventricular zone where neuroblasts continue to proliferate. In contrast, NSP mRNA is suppressed by thyroid hormone and was selectively expressed in the intermediate zone where neurons are beginning to differentiate. Oct-1 is a member of the POU-domain family of transcription factors (Dominov and Miller, 1996) that is implicated in the control of neuronal proliferation. NSP is a neural-specific protein associated with endoplasmic reticulum that may be involved in the acquisition of neuronal polarization and differentiation (Senden et al., 1996; Velde et al., 1994b). These experiments demonstrate first that thyroid hormone of maternal origin can affect gene expression in the fetus and provide “biomarkers” of thyroid hormone action in the fetal brain. Second, these data provide circumstantial evidence supporting the view that maternal thyroid hormone may affect proliferation and differentiation of cortical neurons. In addition, because we found that NSP and Oct-1 retain their sensitivity to thyroid hormone in adulthood, our results suggest that the concept of “critical windows” of thyroid hormone action apply to specific developmental events, but probably not to thyroid hormone sensitivity per se.

From this perspective, it is easy to imagine that thyroid hormone plays an important role in developmental processes such as neuronal proliferation that occur in different brain areas at different times (Bayer and Altman, 1995). Therefore, the temporal “window” of thyroid hormone sensitivity will depend on the developmental period over which a particular process occurs, and this will differ for different brain areas. For example, in humans, acute disruption of thyroid hormone action selectively during the first trimester might affect proliferation of cortical neurons, but would not affect proliferation of cerebellar granule cells that undergo proliferation in the third trimester. Considering that many endocrine disruptors, such as polychlorinated biphenyls, are lipophilic and accumulate in the body, it is difficult to imagine that there would be selective exposure windows during development. However, it is possible that the congener profile or dose of exposure might be different for fetal versus lactational exposure. Moreover, we are not certain of the roles thyroid hormone plays in different elements of brain development. For example, we know that thyroid hormone affects proliferation of cerebellar granule cells (Eayrs and Taylor, 1951; Nicholson and Altman, 1972), but we still do not know if this is true for cortical neurons. Therefore, lipophilic chemicals may exert temporally specific effects on brain development through the thyroid hormone signaling system because
this system exerts temporally specific effects. In addition, the various TRs may play different roles in brain development (Bradley et al., 1992; Bradley et al., 1994; Forrest et al., 1990), and if different PCB congeners act preferentially on different TRs, the ultimate consequences of this action may represent only a subset of thyroid hormone dependent phenotypes.

ENDOCRINOLOGY OF THYROID DISRUPTION

The general definition of an endocrine disruptor is “any exogenous agent that interferes with the production, release, transport, metabolism, binding, action, or elimination of natural hormones in the body responsible for the maintenance of homeostasis and the regulation of developmental processes” (Kavlock et al., 1996). Each process in the pathway from hormone production to hormone action is itself composed of several biochemical or physiological steps. Because each of these steps may be an independent site of disruption, it is reasonable to predict that different classes of synthetic or natural environmental chemicals may interfere with a specific hormonal signaling pathway at different steps from hormone production to hormone action. Clearly, this is true for the thyroid system. Environmental agents producing goitrogenic and/or antithyroid effects have been categorized according to chemical class (Gaitan and Cooksey, 1989). These classes range from complex anions such as perchlorate or lithium which block iodide uptake into the thyroid gland (Green, 1996), to halogenated biphenyls, which appear to have a variety of effects on thyroid hormone transport, metabolism, and perhaps hormone binding (Brouwer et al., 1998; Brucker-Davis, 1998; Cheek et al., 1999). However, despite the variety of mechanisms by which goitrogenic or antithyroid agents have been shown to act on the thyroid system, all ultimately affect circulating thyroid hormone concentrations (Brucker-Davis, 1998; Gaitan, 1989; Green, 1996). In fact, it was the effect on circulating thyroid hormone that identified these agents as goitrogens or antithyroid agents initially.

In general, the ability of a chemical to influence circulating levels of thyroid hormone does not necessarily provide a clear indication of its effects on thyroid hormone action, though it is often assumed. For example, PCB exposure does not always produce a compensatory increase in circulating TSH, despite profound reductions in circulating levels of thyroid hormone (reviewed in (Brouwer et al., 1998; Kolaja and Klaassen, 1998)), suggesting that unidentified individual PCB congeners may suppress TSH (Brouwer et al., 1998; Kolaja and Klaassen, 1998). In addition, developmental exposure to PCBs advances the onset of eye opening in rats (Goldey et al., 1995), an event associated with hyperthyroidism. Children exposed to high levels of PCBs can exhibit hyperactivity (Guo et al., 1994), a symptom that also may be associated with subclinical hyperthyroidism (Suresh et al., 1999). Finally, we have recently shown that developmental exposure to PCBs can increase the expression of two thyroid hormone-responsive genes in the developing brain; namely, RC3/Neurogranin, and myelin basic protein (Zoeller et al., 2000). Thus, in the case of PCBs, their ability to reduce circulating levels of thyroid hormone is not uniformly associated with effects consistent with hypothyroidism.

Although PCBs do not exert effects fully consistent with hypothyroidism, they do produce specific effects that appear to be mediated by reduced thyroid hormone concentrations. For example, PCB exposure reduces circulating levels of thyroid hormone and produces hearing loss in rats (Goldey et al., 1995) that can be partially ameliorated by T4 administration (Goldey and Crofton, 1998). In addition, T4 can normalize the PCB-induced suppression of choline acetyltransferase activity in the forebrain of neonatal rats (Ku et al., 1994). Finally, postnatal PCB exposure can increase testis size of the adult rat (Cooke et al., 1996), an effect that is identical to that of perinatal treatment with goitrogens (Cooke et al., 1993). Taken together, these data suggest that PCBs can produce effects consistent with an antithyroid action as well as effects consistent with a thyroid hormone-like action.

PCBs are a class of industrial compounds consisting of paired biphenyl rings with various degrees of chlorination (Tilson and Kodavanti, 1997). The pattern of chlorine substitution on the biphenyl rings can produce a structure that appears to be similar to that of thyroxine (Chauhan et al., 1999). Several studies have shown that individual PCB congeners can bind to thyroxine-binding proteins with high affinity (Brouwer et al., 1998). Specifically, individual PCB congeners can bind to transthyretin (Chauhan et al., 1999), intracellular T4-binding sites (Brundl and Buff, 1993) and nuclear T3-binding sites (McKinney et al., 1987). However, the evidence that PCBs can bind to the classic thyroid hormone receptor is weak. Cheek et al. (1999) have recently shown that some individual PCB congeners can bind to the human TRβ1 with a very low affinity (Ki = 30µM). It seems unlikely that this would be of physiological significance. However, there are a large number of PCB congeners present in common mixtures, and there are a large number of possible metabolic modifications (Seegal, 1996; Tilson et al., 1998). Perhaps some individual congeners do bind to the TR, or alter their ability to respond to thyroid hormone.

An alternate, or additional, mechanism by which PCB exposure may produce a thyroid hormone-like effect on the developing brain is by enhancing thyroid hormone uptake into tissues and increasing the conversion of T4 to T3. Specifically, PCB-induced hypothyroxinemia may increase cellular uptake of T4 or T3 and increase the expression of deiodinases responsible for intracellular conversion of T4 to T3. Tissue uptake of T3 or T4 is elevated by reduced levels of
thyroxine (Everts et al., 1994b; Friesema et al., 1999; Moreau et al., 1999) which also increases the expression of type II deiodinase in brain (Burmeister et al., 1997; Germain and Galton, 1997). However, these processes are affected by hypothyroxinemia caused by goitrogens or PCBs, yet the two kinds of chemicals produce very different effects on thyroid hormone-responsive measures. Therefore, the differences in effects of these two treatments may not arise from the induction of compensatory mechanisms alone. Clearly, further work is required to understand the role of T₄ transport and deiodination in the regulation of thyroid hormone action during periods of hypothyroxinemia caused by different agents.

CONCLUSIONS

Clinical studies show that maternal thyroid hormone reaches the fetus and that fetal hypothyroidism can produce neurological deficits. Experimental work is beginning to confirm that thyroid hormone of maternal origin can reach the fetus and affect gene expression in the fetal brain. Therefore, factors that affect thyroid hormone action in the fetal brain, either directly or indirectly by disrupting maternal thyroid economy, have the potential to affect brain development. However, the developmental processes affected by thyroid hormone during fetal life, the molecular mechanisms mediating these thyroid hormone effects, the developmental periods during which thyroid hormone is important for a particular event, and the ultimate consequences to brain function in the adult, are poorly understood. Until these issues are better understood, it will be difficult to determine the full extent of thyroid disruption and to link thyroid disruption to specific measures of intellectual performance.

The extremely pleiotropic nature of thyroid hormone action will also present a challenge to those working in the field of thyroid disruption. For example, thyroid hormone induces a negative transcriptional effect on the gene encoding TRH (Hollenberg et al., 1995), but this only occurs in TRH neurons located in the hypothalamic paraventricular nucleus (Koller et al., 1987; Segersen et al., 1987b; Zoeller et al., 1993), despite the widespread distribution of TRH in TR-containing neurons throughout the brain (Bradley et al., 1992; Segersen et al., 1987a). Another example is that Oct-1 expression is enhanced by thyroid hormone before birth, but suppressed by thyroid hormone after birth, in the same tissue (Dowling et al., 1998). Therefore, evaluating the effect of thyroid disruptors on thyroid hormone action will require an appreciation for this plasticity.

The molecular mechanism(s) believed to be responsible for the variable effects of thyroid hormone action reveal the possibility that thyroid action can be disrupted without affecting hormone delivery to the cell. Thyroid hormone receptors are believed to require the formation of heterodimers with other transcription factors, including receptors for retinoids or vitamin D, to affect the expression of some genes (Lazar, 1993; Lazar, 1994; Mangelsdorf and Evans, 1995). Therefore, disruption of retinoic acid signaling may disrupt thyroid hormone action without affecting circulating concentrations of thyroid hormones or TSH. This same logic applies to the many types of proteins that have been shown to interact with TRs, including corepressors and coactivators (Koenig, 1998). Although speculative, it would explain why PCB exposure produces effects in animals which simultaneously appear to be anti-thyroid and thyroid hormone-like.

ACKNOWLEDGEMENTS

Preparation of this manual was supported in part by a Grant from the National Institute of Environmental Health Sciences ES10026 to R. Thomas Zoeller.

REFERENCES

Bakker O, Beeren HCV, Wiersinga WM. Desethylamiodarone is a noncompetitive inhibitor of the binding of thyroid hormone to the thyroid hormone beta-1 receptor protein. Endocrinology 1994; 134:1665-1670

Beeren HCV, Bakker O, Wiersinga WM. Desethylamiodarone is a competitive inhibitor of the binding of thyroid hormone to the alpha-1 receptor protein. Mol Cell Endocrinol 1995; 112:15-19

Bonet B, Herrera E. Different response to maternal hypothyroidism during the first and second half of gestation in the rat. Endocrinology 1988; 122:450-455

Bradley DJ, Towle HC, Young WS. Spatial and temporal expression of alpha- and beta-thyroid hormone receptor mRNAs, including the beta-2 subtype, in the developing mammalian nervous system. J Neurosci 1992; 12:2288-2302

Bradley DJ, Towle HC, Young WS. Alpha and beta thyroid hormone receptor (TR) gene expression during auditory neurogenesis: evidence for TR isoform-specific transcriptional regulation in vivo. Proc Natl Acad Sci USA 1994; 91:439-443
THYROID DISRUPTION BY ENVIRONMENTAL CHEMICALS

Bradley DJ, WS Young I, Weinberger C. Differential expression of alpha and beta thyroid hormone receptor genes in rat brain and pituitary. Proc Natl Acad Sci USA 1989; 86:7250-7254

Brucker-Davis F. Effects of environmental synthetic chemicals on thyroid function. Thyroid 1998; 8:827-856

Burmeister LA, Pachucki J, Germain DLS. Thyroid hormones inhibit type 2 iodothyronine deiodinase in the rat cerebral cortex by both pre- and posttranslational mechanisms. Endocrinology 1997; 138:5231-5237

Calvo R, Obregon MJ, Rey FEd, Escobar GMd. The rat placenta and the transfer of thyroid hormones from the mother to the fetus. Effects of maternal thyroid status. Endocrinology 1992; 131:??

Chauhan KR, Kodavanti PRS, McKinney JD. Assessing the role of ortho-substitution on polychlorinated biphenyl binding to transthyretin, a thyroxine transport protein. Toxicol Appl Pharmaco 1999; 162:10-21

Cheek AO, Kow K, Chen J, McLachlan JA. Potential mechanisms of thyroid disruption in humans: interaction of organochlorine compounds with thyroid receptor, transthyretin, and thyroid-binding globulin. Env Hlth Perspectives 1999; 107:273-278

Dowling ALS, Martz GU, Darling DS, Zoeller RT. Thyroid hormone affects the expression of multiple genes in the fetal and adult brain. Thyroid 1998; 8 (Suppl 1):64

Dussault JH, Walker P. Congenital Hypothyroidism. Dekker, New York, 1983

Eayrs JE, Taylor SH. The effect of thyroid deficiency induced by methyl thiouracil on the maturation of the central nervous system. J Anat 1951; 85:350-358

Everts ME, Visser TJ, Moerings EPCM, Docter R, Toor Hv, Tempelaars AMP, Jong Md, Krenning EP,
Hennemann G. Uptake of triiodothyroacetic acid and its effect on thyrotropin secretion in cultured anterior pituitary cells. Endocrinology 1994b; 135:2700-2707

Falcone M, Miyamoto T, Fierro-Renoy F, Macchia E, DeGroot LJ. Evaluation of the ontogeny of thyroid hormone receptor isotypes in rat brain and liver using an immunohistochemical technique. Eur J Endocrinol 1994; 130:97-106

Fink IL, Bailey TJ, Gustafson TA, Markham BE, Morkin E. Complete amino acid sequence of human thyroxine-binding globulin deduced from cloned DNA: Close homology to the serine antiproteases. Proc Natl Acad Sci USA 1986; 83:7708-7712

Greer MA, Sato N, Wang X, Greer SE, McDonald S. Evidence that the major physiological role of TRH in the hypothalamic-paraventricular nuclei may be to regulate the set-point for thyroid hormone negative feedback on the pituitary thyrotroph. Neuroendocrinology 1993; 57:569-575

Hodin RA, Lazar MA, Wintman BI, Darling DS, Chin WW. Identification of a thyroid hormone receptor that is pituitary-specific. Science 1989; 244:76-79

Hood A, Klaassen CD. Differential effects of microsomal enzyme induces on in vitro thyroxine...
THYROID DISRUPTION BY ENVIRONMENTAL CHEMICALS

(T4) and triiodothyronine (T3) glucuronidation. Tox Sci 2000; 55:78-84

Izumo S, Mahdavi V. Thyroid hormone receptor alpha isoforms generated by alternative splicing differentially activate myosin HC gene transcription. Nature 1988; 334:539-542

Klett M. Epidemiology of congenital hypothyroidism. Exp Clin Endocrinol Diabetes 1997; 105 (Suppl 4):19-23

Koenig RJ. Thyroid hormone receptor coactivators and corepressors. Thyroid 1998; 8:703-713

Koenig RJ, Warne RL, Brent GA, Harney JW. Isolation of a cDNA clone encoding a biologically active thyroid hormone receptor. Proc Natl Acad Sci USA 1988; 85:5031-5035

Kolaja KL, Klaassen CD. Dose-response examination of UDP-Glucuronosyltransferase inducers and their ability to increase both TGF-B expression and thyroid follicular cell apoptosis. Toxicol Sci 1998; 46:31-37

Koller KJ, Wolff RS, Warden MK, Zoeller RT. Thyroid hormones regulate levels of thyrotropin-releasing hormone mRNA in the paraventricular nucleus. Proc Natl Acad Sci USA 1987; 84:7329-7333

Ku LMjd, Sharma-Stokkermans M, Meserve LA. Thyroxine normalizes polychlorinated biphenyl (PCB) dose-related depression of choline acetyltransferase (ChAT) activity in hippocampus and basal forebrain of 15-day-old rats. Toxicol 1994; 94:19-30

Lazar MA. Thyroid hormone receptors: multiple forms, multiple possibilities. Endocr Rev 1993; 14:184-193

Magne JA, Kane J, Chou ET. Intravenous thyrotropin (TSH)-releasing hormone releases human TSH that is structurally different from basal TSH. J Clin Endocrinol Metab 1992; 74:1306-1311

Mangelsdorf DJ, Evans RM. The RXR heterodimers and orphan receptors. Cell 1995; 83:841-850

Merchenthaler I, Liposits Z. Mapping of thyrotropin-releasing hormone (TRH) neuronal systems of rat forebrain projecting to the median eminence and the OVLT. Immunocytochemistry combined with retrograde labeling at the light and electron microscopic levels. Acta Biol Hung 1994; 45:361-374

Murray MB, Zil ND, McCready NL, MacDonald MJ, Towle HC. Isolation and characterization of rat cDNA clones for two distinct thyroid hormone receptors. J Biol Chem 1988; 263:12770-12777

Nicholson JL, Altman J. The effects of early hypo- and hyperthyroidism on the development of rat cerebellar

Oppenheimer JH, Schwartz HL. Molecular basis of thyroid hormone-dependent brain development. Endocrine Rev 1997; 18:462-475

Porterfield SP. Vulnerability of the developing brain to thyroid abnormalities: environmental insults to the thyroid system. Env Hlth Perspectives 1994; 102 Suppl 2:125-130

Porterfield SP, Hendrich CE. The role of thyroid hormones in prenatal neonatal neurological development-current perspectives. Endocrine Rev 1993; 14:94-106

Roti E, Minelli R, Gardini E, Braverman LE. The use and misuse of thyroid hormone. Endocrine Rev 1993; 14:401-423

Schusssler GC. The thyroxine-binding proteins. Thyroid 2000; 10:141-150

Schwartz HL, Ross ME, Oppenheimer JH. Lack of effect of thyroid hormone on late fetal rat brain development. Endocrinology 1997; 138:3119-3124

Schwartz HL, Strait KA, Ling NC, Oppenheimer JH. Quantitation of rat tissue thyroid hormone binding receptor isoforms by immunoprecipitation of nuclear triiodothyronine binding capacity. J Biol Chem 1992; 267:11794-11799

Segersen TP, Kauer J, Wolfe HC, Mobjtaker H, Wu P, Jackson IM, Lechan RM. Thyroid hormone regulates TRH biosynthesis in the paraventricular nucleus of the rat hypothalamus. Science 1987b; 238:78-80

Taylor T, Gesundheit N, Weintraub BD. Effects of in vivo bolus versus continuous TRH administration on TSH

Taylor T, Wondisford FE, Blaine T, Weintraub BD. The paraventricular nucleus of the hypothalamus has a major role in thyroid hormone feedback regulation of thyrotropin synthesis and secretion. *Endocrinology* 1990; 126:317-324

Timiras PS, Nzekwe EU. Thyroid hormones and nervous system development. *Biol Neonate* 1989; 55:376-385

Vanderschueren-Lodeweyckx M, Debruyne F, Dooms L, Eggermont E, Eeckels R. Sensorineural hearing loss in sporadic congenital hypothyroidism. *Arch Dis Child* 1983; 58:419-422

Vliet GV. Neonatal hypothyroidism: Treatment and Outcome. *Thyroid* 1999; 9:79-84

Zoeller RT, Dowling ALS, Vas A. Developmental exposure to polychlorinated biphenyls exerts thyroid hormone-like effects on the expression of RC3/Neurogranin and myelin basic protein messenger ribonucleic acids in the developing rat brain. *Endocrinology* 2000; 141:181-189

Zoeller RT, Kabeer N, Albers HE. Molecular mechanisms of signal integration in hypothalamic neurons. *Amer Zool* 1993; 33:244-254