American Trypanosomiasis History

- *Trypanosoma cruzi* - Chagas disease
- Species name was given in honor of Oswaldo Cruz - mentor of C. Chagas
- By 29, Chagas described the agent, vector, clinical symptoms - new disease

- 16-18 million infected
- 120 million at risk
- ~50,000 deaths annually
- leading cause of cardiac disease in South and Central America
Trypanosoma cruzi

- Intracellular parasite
- Trypomastigotes have ability to invade tissues - non-dividing form
- Once inside tissues convert to amastigotes - dividing forms
- Ability to infect and replicate in most nucleated cell types

Cell Invasion

- Trypomastigotes induce a Ca\(^{2+}\) signaling event
- Ca\(^{2+}\) dependent recruitment and fusion of lysosomes
- Differentiation is initiated in the low pH environment, but completed in the cytoplasm

Transient residence in the acidic lysosomal compartment is essential: triggers differentiation into amastigote forms
Trypanosoma cruzi life cycle

Triatomine Bug Stages
- Trypanosome takes a blood meal
- Metacyclic trypomastigotes infect various cells of the host
- Tissue stages
- Bloodstream stages

Human Stages
- Metacyclic trypomastigotes penetrate various cells at bite wound sites
- Inside cells, they transform into amastigotes
- Amastigotes multiply by binary fission in cells of infected tissues
- Trypanosomes can infect other cells and transform into extracellular amastigotes in new infection sites
- Clinical manifestations can result from the infectious cycle
- Transsudate amastigotes transform into trypanosomes, then burst out of the cell and enter the bloodstream.

Triatomid Vectors
- >100 species can transmit Chagas disease
- 3 primary vectors
 - *Triatoma dimidiata* (central Am.)
 - *Rhodnius prolixis* (Colombia and Venezuela)
 - *Triatoma infestans* (*‘southern cone’ countries*)

Common Names
- triatomine bugs
- reduviid bugs
- assassin bugs
- kissing bugs
- conenose bugs

One happy triatomid!
Vector Distribution

- 4 principal vectors
- 10-35% of vectors are infected
- Parasites have been detected in *T. sanguisuga*
- Enzootic - in animal populations at all times
- Many animal reservoirs
 - Domestic animals
 - Opossums
 - Raccoons
 - Armadillos
 - Wood rats

Factors in Human Transmission

- Early defication - during the triatome bloodmeal
- Colonization of human habitats
 - Adobe walls
 - Thatched roofs
- Proximity to animal reservoirs
Modes of Transmission

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector</td>
<td>Natural transmission by triatome bugs through contamination with infected feces.</td>
</tr>
<tr>
<td>Transfusion</td>
<td>A prevalent mode of transmission in urban areas. Gentian violet treatment (24 hr) eliminates parasites in blood.</td>
</tr>
<tr>
<td>Congenital</td>
<td>Occurs during any stage of T. cruzi infection. Can result in premature labor, abortion neonatal death.</td>
</tr>
<tr>
<td>Accidental</td>
<td>Ingestion of food contaminated with metacyclic trypomastigotes. Laboratory accidents.</td>
</tr>
</tbody>
</table>

Trypanosoma cruzi in the US

- triatome bugs found in U.S.
- parasite common in wild animals
- 5 confirmed cases - natural transmission
- why limited transmission?
 - late defecators
 - zoophillic vectors
 - better houses

[Map of the United States showing distribution of T. cruzi]
RIPA test for antibody to *T. cruzi*

Chagas' Biovigilance Network

Chagas' Biovigilance: RIPA Positive Map 2007-today
Clinical course of Chagas

• **Acute Phase**
 active infection
 1-4 months duration
 most are asymptomatic (children more symptomatic)

• **Indeterminate Phase**
 10-30 years of latency!
 relatively asymptomatic with no detectable parasitemia
 Seropositive - low number of circulating parasites

• **Chronic Phase**
 10-30% of infected exhibit cardiomyopathy or megasymphomases

Acute phase

• 1-2 week incubation period
• local inflammation
 • Romaña’s sign
 • chagoma
• symptoms can include: fever, malaise, lymphadenopathy, hepatosplenomegaly, nausea, diarrhea

• acute, often fatal, myocarditis develops in a few individuals
• high parasitemias in myofibrils
Chronic Inflammation

- long latency characterized by seropositivity and no parasitemia
- higher prevalence of ECG abnormalities in asymptomatic seropositive persons
- progressive development of abnormalities
 - right bundle branch block
 - left anterior hemiblock
- clinical presentations include:
 - arrhythmias and conduction defects
 - congestive heart failure
 - Apical aneurysm (left ventricle)

Cumulative effects of small but chronic amounts of parasites in body for decades

Chronic conditions

- Megaviscera
 - prevalence varies by geographical zones
 - Chili, central Brazil
 - colon and esophagus most frequently affected
 - megaesophagus
 - painful swallowing
 - regurgitation
 - megacolon
 - severe constipation
Megacolon

Basis of Pathogenesis

- Still unknown, hotly debated - several hypotheses
 - **Autoimmunity** (indirect effects)
 - Low parasite numbers
 - Delayed onset with tissue specificity
 - Auto-self antibodies detected
 - Immunosuppression exacerbates infection!
 - **Alteration of immune response**
 - Switching of Th1 to Th2 correlates with disease
 - **Chagasic factor or toxin** (none identified yet)
 - Irreversible damage to parasympathetic neurons
 - **Parasite mediated destruction**
 - Correlation between parasites and inflammation, but low levels of detectable parasites
Diagnosis

- Standard methods
 - Parasite detection (Acute)
 - Stained blood smears
 - *In vitro* culture
 - Inoculation in mice
 - PCR
 - Serological
 - Immunofluorescence
 - Hemagglutination
 - ELISA

- Xenodiagnosis
 - Laboratory reared insects
 - Feed on patient
 - 10-30 days - examine insect gut contents

Treatment for kinetoplastid diseases

- Chagas
 - Acute
 - Nifurtimox
 - 60-90 days
 - Mode of action (?) ROS - then DNA damage
 - Benznidazole
 - 30-120 days
 - Mode of action - thought to inhibit nucleic acid synthesis (ROS?)
 - Chronic
 - Virtually untreatable - just treat symptoms
Treatments for Chagas

<table>
<thead>
<tr>
<th>Stage</th>
<th>1985</th>
<th>2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Stage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First-line drugs</td>
<td>Benznidazole</td>
<td>Benznidazole</td>
</tr>
<tr>
<td></td>
<td>Nifurtimox</td>
<td>Nifurtimox</td>
</tr>
<tr>
<td>Clinical trials</td>
<td>Allopurinal</td>
<td></td>
</tr>
<tr>
<td>Indeterminate Stage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical trials</td>
<td>-</td>
<td>Benznidazole</td>
</tr>
<tr>
<td>Chronic Stage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First-line drugs</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clinical trials</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pre-clinical stage</td>
<td>-</td>
<td>Antifungal triazoles</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cruzipain inhibitor</td>
</tr>
</tbody>
</table>

What is happening in invasion?

- The invasion mechanism is distinct from phagocytosis
- Large particle phagocytosis
T. cruzi invasion- non phagocytic

Phagocytosis
Active invasion

Yeast
Trypanosoma cruzi

Actin filaments - phalloidin staining

Lamp-1
major marker
for lysosomes

Extracellular parasite
Lysosomes

Insensitive to actin disrupting drugs, but **Sensitive to microtubule disrupting drugs**,

T. cruzi invasion summary

Parasite agonist

IP3 - mediator for release of Ca2+ from intracellular stores

Signaling Process involved in this unique invasion

Sensitive to microtubule disrupting drugs, and insensitive to actin disrupting drugs.