

oxidative decarboxylation

Parasite Biochemistry (in general)

- Parasitic life style = ADAPTATIONS
- Specific niche = diversity in adaptations Anaerobic vs. aerobic
- All parasites still require a supply of energy for biosynthesis of macromolecules, growth, mechanical activity, reproduction etc.
- A major nutritional requirement is supplied by the host.
- Limited range of biosynthetic pathways evolution of salvage pathways - no purine (A, G) biosynthetic pathway in any parasites - only salvage pathways.

Amitochondriate Biochemistry

- Lumen dwelling environment is O₂ low
- Anaerobic or microaerophilic organisms
 - Do not require O₂ for survival and multiplication O₂ is not the terminal electron acceptor
 - Can tolerate low O₂ conc., growth is inhibited under higher O₂ conc. (aerotolerant anaerobes)
- Fermentative metabolism
 - In the presence or absence of O₂
 - Different end products
- Metabolic oddities
 - PPi-linked enzymes (instead of ATP)
 - Fe-S based carbohydrate catabolism

Synthesis of ATP

- Oxidative phosphorylation coupling of ATP formation to the respiratory chain (electron transport, membrane associated, O₂ as final e- acceptor). As electrons move through complexes, a proton gradient is generated which drives ATP formation.
 Chemiosmotic theory - P. Mitchell, 1978.
- Substrate level phosphorylation direct phosphorylation of ADP via the transfer from a high-energy intermediate.

Important Enzymes

- PFO pyruvate ferredoxin oxidoreductase
 pyruvate + CoA + (ox)ferredoxin = acetyl-CoA + CO₂ + (red) ferredoxin
- NFO NAD(P)H ferredoxin oxidoreductase
 reduced ferredoxin + NAD+ = oxidized ferredoxin + NADH + H+
- Hydrogenase
- reduced ferredoxin + 2 H+ = oxidized ferredoxin + H₂
 Acetate:succinate CoA transferase
- Acetyl-CoA + succinate = succinyl- CoA + acetate
- Succinate thiokinase (succinyl-CoA synthetase)
 - ADP + phosphate + succinyl-CoA = succinate + CoA + ATP

- Soon after, was also found effective against *Giardia* and *Entamoeba*.
- 1970's: became useful for treatment against anaerobic bacteria.

Review

Glycolysis

Compare/contrast mammalian with parasitic

- Mitochondrial respiration
 - Compare/contrast aerobic respiration with anaerobic protist metabolism
 - Future lectures with include variations on the "aerobic" theme.

KEY TO REMEMBER

- Adaptations for specific niche
- Unique biological properties

How to Find New Drugs

- 1. Random screening no design or biological insight
- 2. Analogues of known drugs not a new target
- 3. Rational lead discovery long time & expensive

