
Seminar

www.thelancet.com   Vol 367   May 6, 2006 1521

Introduction
The soil-transmitted helminths are a group of parasitic 
nematode worms causing human infection through 
contact with parasite eggs or larvae that thrive in the warm 
and moist soil of the world’s tropical and subtropical 
countries. As adult worms, the soil-transmitted helminths 
live for years in the human gastrointestinal tract. More 
than a billion people are infected with at least one species 
(table 1).1 Of particular worldwide importance are the 
roundworms (Ascaris lumbricoides), whipworms (Trichuris 

trichiura), and hookworms (Necator americanus or 
Ancylostoma duodenale). They are considered together 
because it is common for a single individual, especially a 
child living in a less developed country, to be chronically 
infected with all three worms. Such children have 
malnutrition, growth stunting, intellectual retardation, 
and cognitive and educational defi cits.1 

The soil-transmitted helminths are one of the world’s 
most important causes of physical and intellectual growth 
retardation. Yet, despite their educational, economic, and 
public-health importance (panel), they remain largely 
neglected by the medical and international community. 
This neglect stems from three features: fi rst, the people 
most aff ected are the world’s most impoverished, 
particularly those who live on less than US$2 per day; 
second, the infections cause chronic ill health and have 
insidious clinical presentation; and third, quantifi cation 

of the eff ect of soil-transmitted helminth infections on 
economic development and education is diffi  cult. Over the 
past 5 years, however, the worldwide community has 
begun to recognise the importance of these infections after 
revised estimates showed that their combined disease 
burden might be as great as those of malaria or 
tuberculosis.2 Studies have also highlighted the profound 
eff ect of soil-transmitted helminth infection on school 
performance and attendance and future economic 
productivity.3,4 Such infections might also increase host 
susceptibility to other important illnesses such as malaria, 
tuberculosis, and HIV infection.5,6 In 2001, the World 
Health Assembly passed a resolution urging member 
states to control the morbidity of soil-transmitted helminth 
infections through large-scale use of anthelmintic drugs 
for school-aged children in less developed countries. A 
response to this resolution could establish one of the 
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The three main soil-transmitted helminth infections, ascariasis, trichuriasis, and hookworm, are common clinical 
disorders in man. The gastrointestinal tract of a child living in poverty in a less developed country is likely to be 
parasitised with at least one, and in many cases all three soil-transmitted helminths, with resultant impairments in 
physical, intellectual, and cognitive development. The benzimidazole anthelmintics, mebendazole and albendazole, 
are commonly used to remove these infections. The use of these drugs is not limited to treatment of symptomatic 
soil-transmitted helminth infections, but also for large-scale prevention of morbidity in children living in endemic 
areas. As a result of data showing improvements in child health and education after deworming, and the burden of 
disease attributed to soil-transmitted helminths, the worldwide community is awakening to the importance of these 
infections. Concerns about the sustainability of periodic deworming with benzimidazole anthelmintics and the 
emergence of resistance have prompted eff orts to develop and test new control tools.

Search strategy and selection criteria

Data for this review were identifi ed by a search of PubMed 
without date restriction for the items “geohelminth”, “soil-
transmitted helminths”, “hookworms”, “Necator americanus”, 
“Ancylostoma duodenale”, “Ascaris lumbricoides”, and “Trichuris 
trichiura”. We also made widespread use of WHO publications 
on soil-transmitted helminths and chapters of books from 
the authors. When more than one paper illustrated a specifi c 
point, the most representative paper was chosen. We selected 
papers published in English.

Disease Estimated population 
infected (millions)

Geographic region

Major worldwide pathogens

Ascaris lumbricoides Common roundworm 
infection

807–1221

Trichuris trichiura Whipworm infection 604–795

Necator americanus and 
Ancylostoma duodenale

Hookworm infection 576–740

Strongyloides stercoralis Threadworm infection 30–100

Enterobius vermicularis Pinworm infection 4–28% of children

Toxocara canis and 
Toxocara cati

Visceral and ocular larva 
migrans

2–80% of children

Pathogens of minor or local importance

Ancylostoma brazilienese Cutaneous larva migrans Coastal regions worldwide

Uncinaria stenocephala Cutaneous larva migrans Coastal regions worldwide

Ancylostoma caninum Eosinophilia enteritis Australia 

Ancylostoma ceylanicum Hookworm infection Asia

Baylisascaris procyonis Eosinophilic meningitis North America

Oesophagostomum bifurcum Nodular worm infection West Africa

Strongyloides fuelleborni Swollen belly syndrome Papua New Guinea

Ternidens diminutus False hookworm infection Southern Africa

Table 1: Soil-transmitted helminth infections of human beings
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largest worldwide health initiatives ever undertaken.7 
However, such widespread and frequent use of 
anthelmintics could lead to drug resistance or at least a 
decline in eff ectiveness of these front-line drugs in the 
long-term battle with soil-transmitted helminths.8,9 

The parasites
Adult hookworms of the genera Necator and Ancylostoma 
parasitise the upper part of the human small intestine, 
whereas ascaris roundworms parasitise the entire small 
intestine and adult trichuris whipworms live in the large 
intestine, especially the caecum (table 2).10 The parasites 
can live for several years in the human gastrointestinal 
tract. Human beings are regarded as the only major 
defi nitive host for these parasites, although in some cases 
ascaris infections can also be acquired from pigs.11 The 
soil-transmitted helminths vary greatly in size, and 
female worms are larger than males (fi gure 1).10 After 
mating, each adult female produces thousands of eggs 
per day (fi gure 2), which leave the body in the faeces. 

People become infected with T trichiura and 
A lumbricoides by ingesting the fully developed eggs. 
After ingestion of trichuris eggs, the released larvae 
moult and travel to the colon where they burrow into the 
epithelia and develop into adult whipworms within about 
12 weeks.10 Ascaris larvae penetrate the intestinal mucosa 
and after an obligatory extraintestinal migration, they 
enter the liver then the lungs, before passing over the 
epiglottis to re-enter the gastrointestinal tract and develop 
into egg-laying adult worms about 9–11 weeks after egg 
ingestion.12 

N americanus and A duodenale hookworm eggs hatch in 
soil. The larvae moult twice to become infective third-stage 
larvae, which are non-feeding but motile organisms that 
seek out higher ground to improve the chance of contact 
with human skin. After skin penetration, they enter 
subcutaneous venules and lymphatic vessels to access the 
host’s aff erent circulation. Ultimately, the larvae become 
trapped in pulmonary capillaries, enter the lungs, pass over 
the epiglottis, and migrate into the gastrointestinal tract.13 
About 5–9 weeks are needed from skin penetration until 
development of egg-laying adults. A duodenale larvae are 
also orally infective, and lactogenic transmission during 
breastfeeding has been postulated. Soil-transmitted 
helminths do not reproduce within the host. This feature is 
crucial for understanding of the epidemiology and clinical 
features of soil-transmitted helminth infections, as well as 
the approaches to their control.

Epidemiology and burden of disease
Soil-transmitted helminth infections are widely distributed 
throughout the tropics and subtropics (table 3). Climate is 
an important determinant of transmission of these 
infections, with adequate moisture and warm temperature 

Panel: Major websites on biology and public-health eff ect 
of soil-transmitted helminths

WHO partners for parasite control
http://www.who.int/wormcontrol

Focusing resources on eff ective school health
http://www.freshschools.org

Soil-transmitted helminth genome-sequencing projects
http://www.nematode.net
http://www.sanger.ac.uk/Projects/Helminths/

Ascaris lumbricoides

Female

Trichuris trichiura

Hookworm

Male

Female Male

Female Male

Figure 1: Adult male and female soil-transmitted helminths 
Reproduced with permission.10 

Species Length 
(mm)

Daily egg output 
per female worm

Location in host Lifespan  
(years)

Large common roundworm

Ascaris lumbricoides 150–400 200 000 Small intestine 1 

Whipworm

Trichuris trichiura 30–50 3000–5000 Caecum and colon 1·5–2·0

Hookworms

Necator americanus 7–13 9000–10 000 Upper small intestine 5–7 

Ancylostoma duodenale 8–13 25 000–30 000 Upper small intestine 5–7

Table 2: Characteristics of the soil-transmitted helminths: adult worms of greatest public-health 
signifi cance
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essential for larval development in the soil.15,16 Equally 
important determinants are poverty and inadequate water 
supplies and sanitation.14 In such conditions, soil-
transmitted helminth species are commonly coendemic. 
There is evidence that individuals with many helminth 
infections have even heavier infections with soil-
transmitted helminths.17 Because morbidity from these 
infections and the rate of transmission are directly related 
to the number of worms harboured in the host,18 intensity 
of infection is the main epidemiological index used to 

describe soil-transmitted helminth infection. Intensity of 
infection is measured by the number of eggs per gram of 
faeces, generally by the Kato-Katz faecal thick-smear 
technique.19 For A lumbricoides and T trichiura, the most 
intense infections are in children aged 5–15 years, with a 
decline in intensity and frequency in adulthood. Whether 
such age dependency indicates changes in exposure, 
acquired immunity, or a combination of both remains 
controversial.20 Although heavy hookworm infections also 
occur in childhood, frequency and intensity commonly 
remain high in adulthood, even in elderly people.21 Soil-
transmitted helminth infections are often referred to as 
being “overdispersed” in endemic communities, such that 
most worms are harboured by a few individuals in an 
endemic area.22 There is also evidence of familial and 
household aggregation of infection.23,24 with the relative 
contribution of genetics and common household 
environment debated. 

Estimates of annual deaths from soil-transmitted 
helminth infection vary widely, from 12 00025 to as many 
as 135 000.26 Because these infections cause more 
disability than death, the worldwide burden, as for many 
neglected tropical diseases, is typically assessed by 
disability-adjusted life years (DALY).27 Since the fi rst 
DALY estimates were provided, there has been much 
variability in quoted estimates (table 4),26–28 partly because 
of diff erent emphases on the cognitive and health eff ects. 
The lower estimates assume that most hookworm cases 
do not result in severe anaemia or pronounced protein 
loss by the host, whereas the higher estimates show the 
long-term results of infection such as malnutrition and 
delayed cognitive development, especially in children.29 
For these reasons, school-aged children have been the 
major targets for anthelmintic treatment, and the scale of 
disease in this age group was pivotal in leveraging 
support for school-based control.30, 31 

Ascaris lumbricoides

Trichuris trichiura

Hookworm

Figure 2: Soil-transmitted helminth eggs
Reproduced with permission.10 

LAC SSA MENA SAS India EAP China* Total

Ascariasis 84 173 23 97 140 204 86 807

Trichuriasis 100 162 7 74 73 159 29 604

Hookworm 50 198 10 59 71 149 39 576 

LAC=Latin America and Caribbean; SSA=sub-Saharan Africa; MENA=middle east and 
north Africa; SAS=south Asia; EAP=east Asia and the Pacifi c Islands. *New Chinese data 
derived from Report on the National Survey on Current Situation on Major Human 
Parasitic Diseases in China, Ministry of Health, PRC, and National Institute of Parasitic 
Diseases, China CDC, May, 2005

Table 3: Worldwide estimates of number of soil-transmitted helminth 
infections by region (millions of cases)14

Infection 199027 199028 200125

Ascariasis 1·8 10·5 1·2

Trichuriasis 1·8 6·4 1·6

Hookworm 1·5 22·1 1·8

Total 5·0 39·0 4·7

Table 4: Estimates of DALY lost to soil-transmitted helminth infections
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There is evidence to support the high disease-burden 
estimates from soil-transmitted helminth infections, and 
highlight the importance of hookworm as a threat to 
maternal and child health. For example, cross-sectional 
evidence from Africa and Asia shows that 30–54% of 
moderate to severe anaemia in pregnant women is 
attributable to hookworm,32,33 and intervention studies 
suggest that antenatal anthelmintics substantially increase 
maternal haemoglobin concentrations as well as 
birthweight and infant survival.34 In childhood, hookworm 
contributes to moderate and severe anaemia in school-
aged children,35 and there is increasing recognition of a 
similar contribution in preschool children.36,37 These 
features of hookworm disease need to be better incorporated 
into DALY estimates. Because hookworms are the most 
widespread species of soil-transmitted helminth in sub-
Saharan Africa,16 where iron stores are low, this 
consequence of infection could substantially alter the 
perception of the public-health importance of hookworm. 
In light of their nutritional and educational eff ects, soil-
transmitted helminth infections clearly need to be 
reassessed, as has lately been done for schistosomiasis.38

Host-parasite interactions
Despite their large size and ability to elicit potent immune 
responses, soil-transmitted helminths are refractory to 
host immunity, establishing chronic infections during the 
host’s life, and, in the case of hookworm, intensity of 
infection actually rises with the age of the host.21 These 
organisms have complex life cycles within the human 
host, undergoing a succession of developmental stages, 
which can carry stage-specifi c antigens, and pass through 
a range of host tissues (skin, lungs, and gut).39 Soil-
transmitted helminths are thought to survive within the 
host not just by warding off  immune attack, but instead by 
aggressively subverting the host immune response to 
create niches that optimise successful residence, feeding, 
and reproduction.40 Soil-transmitted helminths induce 
production of cytokines (interleukin-4, interleukin-5, 
interleukin-10, and interleukin-13), parasite-specifi c 
immunoglobulin, and non-specifi c immunoglobulin E, 
and expansion and mobilisation of mast cells, eosinophils, 
and basophils.41 This constellation of responses is known 
as the T-helper-2 (Th2) immune response. It is important 
in allergy and clinical immunology in general.42 Whether 
the Th2 response brings about the elimination or the 
maintenance of the parasite is debated. The functional 
eff ector mechanisms driven by the Th2 response to 
infection with soil-transmitted helminths include 
eosinophil-mediated larval killing, production of specifi c 
and polyclonal immunoglobulin E, mast-cell degranulation, 
goblet-cell hyperplasia, and increased mucus secretion.43 
Diff erent subsets of eff ector cells might operate against 
diff erent nematode species;43,44 for example, mast cells 
seem to be central to protective responses against 
hookworm and ascaris but not in the expulsion of 
trichuris.43 Although immunity to hookworm at the 

population level is not apparent, a negative association 
between concentrations of interleukin-5 and the likelihood 
of being reinfected with N americanus after anthelmintic 
treatment has been found, suggesting that the eff ect of 
interleukin-5 (probably mediated by eosinophils) is directed 
against incoming larvae.45,46 Similarly, inverse associations 
between secretion of interleukin-5 and interleukin-13 and 
susceptibility to reinfection were noted in patients infected 
with A lumbricoides or T trichiura infections.47–49 

The survival of soil-transmitted helminths suggests 
that they succeed by achieving some form of balanced 
parasitism, in which transmission is maintained and 
acute morbidity avoided. This ideal homoeostatic state 
almost certainly needs an environment rich in regulatory 
mechanisms. Interleukin-10 is the most abundantly 
produced regulatory cytokine in soil-transmitted helminth 
infection. However, its role in maintaining the chronicity 
of soil-transmitted helminth infection is unclear.40 Geiger 
and colleagues,50 reported that interleukin-10 responses 
to crude ascaris antigen were high in individuals infected 
with ascaris or trichuris. Whereas Turner and co-workers49 
reported that interleukin-10 concentrations declined with 
intensity of ascaris infection in older individuals, Jackson 
and colleagues48 showed that higher interleukin-10 
concentrations correlated with heavier ascaris infection 
in older people. These downregulatory immune 
mechanisms might also benefi t the host by blocking 
progression to atopic reactions.51 The immune response 
to these infections has long been known to share key 
features with the allergic response, especially the enhanced 
Th2 response. In view of these immunological features 
and the complementary geographic distribution of soil-
transmitted helminth infection and allergic disease, 
many studies have investigated whether the Th2 response 
to soil-transmitted helminths protects or pre-empts the 
host from developing allergic manifestations linked to 
Th2, a theory known as the hygiene hypothesis.51 

Much of the survival success of soil-transmitted 
helminths can be attributed to their secretomes, which 
interact with host tissues and maintain the parasitic 
existence (table 5). Of particular importance are the 
secretions that modulate the host’s immune response. 
As helminth proteomes are being matched to increasing 
gene sequence datasets,74,75 a molecular snapshot of the 
mixture released into host tissues by these parasites is 
being gradually revealed. One constituent, natural-killer-
cell-binding protein, is secreted by adult N americanus 
and binds specifi cally to natural-killer cells and induces 
them to secrete interferon-γ.57 This fi nding is the fi rst 
evidence of a pathogen-derived protein that binds 
selectively to natural-killer cells and the fi rst report of a 
nematode-derived product that induces abundant 
secretion of cytokines from natural-killer cells. The 
researchers suggested that interferon-γ production in 
the gut would counteract the development of a potentially 
host-protective Th2 response that might eliminate the 
parasite.57 Other secreted proteins from adult hookworms 
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modulate immune responses. The dog hookworm, 
A caninum, secretes neutrophil inhibitory factor, which 
binds to the integrins CD11b/CD18 and blocks adhesion 
of activated human neutrophils to vascular endothelial 
cells as well as the release of hydrogen peroxide from 
activated neutrophils.55 This protein is in the pathogenesis-
related protein superfamily, cysteine-rich secreted 
proteins that are abundantly expressed by all parasitic 
nematodes investigated so far. They seem to have 
diverse roles in nematode parasitism by binding to host 
cells. Other hookworm pathogenesis-related proteins 
combat haemostasis by binding to platelets and 
inhibiting their activation.61 The observations that these 
proteins are released by third-stage larvae after 
stimulation with human serum suggests their importance 
during the early stages of larval invasion in the host.76 
The crystal structure of Na ASP-2,52 a pathogenesis-
related protein from N americanus with potential as a 
hookworm vaccine antigen,53,77,78 revealed a structural fold 
that presented a similar charge distribution to that of 
some chemokines.52 Serum from laboratory animals 
vaccinated with ASP-2 blocks larval migration through 
tissue,53,78 although the exact mechanism is not known. 
N americanus secretes a metalloprotease that degrades 
eotaxin, providing a potential strategy to prevent 
recruitment and activation of eosinophils at the site of 

infection.66 The molecules that Ancylostoma secrete to 
inhibit host coagulation and ensure blood fl ow and 
continuous bleeding at the site of parasite attachment, 
including novel inhibitors of factor Xa and VIIa/tissue 
factor, have also been described in detail,79 as has a 
multienzyme cascade involved in host red-blood-cell lysis 
and haemoglobin digestion.58

A lumbricoides has been the focus of much study because 
of the ease with which large quantities of biological 
material can be obtained from A suum (a close relative that 
infects swine). Several secreted molecules of A suum have 
been biochemically characterised. Ascaris secretes from its 
body wall a pepsin inhibitor that is thought to protect 
maturing worms from digestive enzymes in the stomach 
before they reach the small intestine. The crystal structure 
of the pepsin inhibitor from A suum complexed with 
porcine pepsin has been reported,68 and homologous 
inhibitors from other soil-transmitted helminths have 
since been described.80 The non-proteinaceous secreted 
nematode molecules are also of interest because of their 
immunomodulatory properties as pathogen-associated 
molecular patterns. For example, soil-transmitted 
helminths secrete phosphorylcholine that is linked to 
glycoprotein glycans or glycolipids.81 Phosphorylcholine-
bearing molecules interfere with key signalling pathways 
involved in lymphocyte proliferation could be involved in 

Species Molecule Known or putative function Therapeutic potential Reference

Hookworms ASP2 Pathogenesis-related protein of unknown function but secreted on 
host entry by third-stage larvae

Hookworm vaccine antigen 52–54

Similar structure to chemokines; possible protease

Antiserum blocks third-stage larvae migration

NIF Binds CD11b/CD18 and blocks neutrophil migration Treatment for cerebral ischaemia 55,56

NKBP Binds natural killer cells and induces interferon-γ production Potential adjuvant 57

Haemoglobinases Cascade of mechanistically distinct proteases that digest haemoglobin 
in the worm’s gut

Hookworm vaccine antigens 58–60 

HPI Pathogenesis-related protein that inhibits platelet activation and 
adhesion by blocking function of gpIIb/IIIa and gpIa/IIa

Potential hookworm vaccine 
candidate

61,62

AcAPs Novel and potent anticoagulant that inhibit factor Xa, factor VIIa, and 
tissue factor VIIa/TF

Thrombosis and disseminated 
intravascular coagulation

63–65

Eotaxin-cleaving 
protease 

Secreted metalloprotease that digests eotaxin and prevents eosinophil 
recruitment

.. 66

Haemolysin Haemolytic protein that forms pores in erythrocyte membranes 
allowing hemoglobin to be released

Potential hookworm vaccine 
candidate 

67

Ascaris PI-3 Pepsin inhibitor that protects worms from digestion .. 68

PC Phosphorylcholine linked to secreted glycoconjugates suppress 
lymphocyte proliferation

.. 69

Trichuris TT47 Forms pores in caecal epithelial cells, allowing parasite to keep anterior 
end in syncytial environment

.. 70

ES products Promote Th2/Treg response that dampens intestinal infl ammation Therapy for Crohn’s disease and 
ulcerative colitis

71,72

TsMIF Inhibits migration of PBMCs by competing with host macrophage 
inhibitory factor

.. 73

ASP-2=Ancylostoma-secreted protein 2; NIF=neutrophil inhibitory factor; NKBP=natural-killer-cell-binding protein; HPI=hookworm platelet inhibitor; AcAPs=Ancylostoma caninum 
anticoagulant peptides; PI-3=pepsin inhibitor 3; PC=phosphoryl choline; TT47=Trichuris trichiura 47; ES products=excretory secretory products; TsMIF=Trichinella spiralis macrophage 
inhibitory factor; gpIIb/IIIa=glycoprotein IIb/IIIa ; gpIa/lIa=glycoprotein Ia/IIa ; PBMCs=peripheral blood mononuclear cells.

Table 5: Selected molecules secreted by soil-transmitted helminths, their known or putative functions and their potentials as anti-helminth vaccines or 
therapies for other disorders (experimentally proven or suggested by the cited authors)
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the suppression of lymphocyte responses in ascariasis69 
and fi larial nematode infections.82 Moreover, secreted 
ascaris glycosphingolipids inhibit lipopolysaccharide-
induced production of Th1 cytokines such as interferon-γ 
in a phosphorylcholine-dependent manner,69 further 
highlighting the diverse molecular interactions of the 
immunmodulatory secretory products of the soil-
transmitted helminths.

T trichiura secretes large amounts of a protein called 
TT47 that forms ion-conducting pores in lipid bilayers,70 
allowing the parasite to invade the host gut and maintain 
its anterior end in a syncytial environment in the caecal 
epithelium. Unlike T trichiura, the swine whipworm T suis 
does not develop to maturity in people, although the larvae 
can briefl y colonise individuals without causing disease. 
The secreted products of trichuris are potent inducers of 
anti-infl ammatory cytokines.71 This attribute has led to the 
use of T suis to treat proinfl ammatory autoimmune 
disorders such as Crohn’s disease,72 in which helminth 
larvae are thought to create an anti-infl ammatory local 
environment in the gut that combats the proinfl ammatory 
(Th1-biased) immune response associated with this 
disease. The specifi c secreted molecules in T suis that 
induce the anti-infl ammatory response are unknown, 
although potential candidates include one that mimics the 
eff ects of the human chemokine, macrophage migration 
inhibitory factor.73 

Clinical features
The clinical features of soil-transmitted helminth 
infections can be classifi ed into the acute manifestations 
associated with larval migration through the skin and 
viscera, and the acute and chronic manifestations resulting 
from parasitism of the gastrointestinal tract by adult 
worms (table 6).

Early larval migration
Migrating soil-transmitted helminth larvae provoke 
reactions in many of the tissues through which they pass. 
For example, ascaris larvae that die during migration 

through the liver can induce eosinophilic granulomas.83 In 
the lungs, ascaris larval antigens cause an intense 
infl ammatory response consisting of eosinophilic 
infi ltrates that can be seen on chest radiographs. The 
resulting verminous pneumonia is commonly 
accompanied by wheezing, dyspnoea, a non-productive 
cough, and fever, with blood-tinged sputum produced 
during heavy infections. Children are more susceptible to 
pneumonitis, and the disease is more severe on reinfection. 
In some regions—such as Saudi Arabia—verminous 
pneumonia is seasonal and occurs after spring rains.84 
Small numbers of aff ected children develop status 
asthmaticus, leading to the idea that A lumbricoides and its 
zoonotic counterpart, Toxocara canis, are occult 
environmental causes of asthma.85,86 

Several cutaneous syndromes result from skin-
penetrating larvae. Repeated exposure to N americanus and 
A duodenale hookworm third-stage larvae results in ground 
itch, a local erythematous and papular rash accompanied 
by pruritus on the hands and feet.13 By contrast, when 
zoonotic hookworm third-stage larvae—typically 
A braziliense—enter the skin, they produce cutaneous larva 
migrans, which is characterised by the appearance of 
serpiginous tracks on the feet, buttocks, and abdomen.87 
After skin invasion, hookworm third-stage larvae travel 
through the vasculature and enter the lungs, although the 
resulting pneumonitis is not as great as in ascaris 

infection.13,88 Oral ingestion of A duodenale larvae can result 
in Wakana syndrome, which is characterised by nausea, 
vomiting, pharyngeal irritation, cough, dyspnoea, and 
hoarseness.13 

Intestinal parasitism
Generally only soil-transmitted helminth infections of 
moderate and high intensity in the gastrointestinal tract 
produce clinical manifestations, with the highest-
intensity infections most common in children.28 The 
numerical threshold at which worms cause disease in 
children has not been established, because it depends 
on the underlying nutritional status of the host. Each of 
the major soil-transmitted helminths produces 
characteristic disease syndromes. 

Ascariasis
The presence of large numbers of adult ascaris worms in 
the small intestine can cause abdominal distension and 
pain (fi gure 3). They can also cause lactose intolerance 
and malabsorption of vitamin A and possibly other 
nutrients,89 which might partly cause the nutritional and 
growth failure. In young children, adult worms can 
aggregate in the ileum and cause partial obstruction 
because the lumen is small.90,91 Various grave 
consequences can ensue, including intussusception, 
volvulus, and complete obstruction,90 leading to bowel 
infarction and intestinal perforation. The resulting 
peritonitis can be fatal, although if the child survives, the 
wandering adult worms can die and cause a chronic 

Specifi c clinical features/syndromes General features

Larval migration Adult gastrointestinal parasitism

Ascariasis Verminous pneumonia Lactose intolerance Impaired growth

Vitamin A malabsorption Impaired physical fi tness

Intestinal obstruction Impaired cognition

Hepatopancreatic ascariasis Reductions in school attendance
and performance

Trichuriasis None Colitis

Trichuris dysentery syndrome

Rectal prolapse

Hookworm Ground itch Intestinal blood loss

Cough Iron-defi ciency anaemia

Wakana disease Protein malnutrition

Table 6: Specifi c and general clinical features or syndromes of the soil-transmitted helminth infections of 
major medical importance
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granulomatous peritonitis. Typically, a child with 
obstruction because of ascaris has a toxic appearance 
with signs and symptoms of peritonitis. In some cases, a 
mass can be felt in the right lower quadrant.92 Adult 
worms can enter the lumen of the appendix, leading to 
acute appendicular colic and gangrene of the appendix 
tip, resulting in a clinical picture indistinguishable from 
appendicitis. Adult ascaris worms also tend to move in 
children with high fever, resulting in the emergence of 
worms from the nasopharynx or anus. Hepatobiliary and 
pancreatic ascariasis results when adult worms in the 
duodenum enter and block the ampullary orifi ce of the 
common bile duct, leading to biliary colic, cholecystitis, 
cholangitis, pancreatitis, and hepatic abscess.90 By 
contrast with intestinal obstruction, hepatobiliary and 
pancreatic ascariasis occurs more commonly in adults—
especially women—than in children, presumably 
because the adult biliary tree is large enough to 
accommodate an adult worm. 90 

Trichuriasis
Adult whipworms live preferentially in the caecum, 
although in heavy infections, whipworms can be seen 
throughout the colon and rectum. The adult parasite leads 
both an intracellular and an extracellular existence, with 
the anterior end embedded in epithelial tunnels within 
the intestinal mucosa and the posterior end located in the 
lumen. Infl ammation at the site of attachment from large 
numbers of whipworms results in colitis. Longstanding 
colitis produces a clinical disorder that resembles 
infl ammatory bowel disease, including chronic abdominal 
pain and diarrhoea, as well as the sequelae of impaired 
growth, anaemia of chronic disease, and fi nger clubbing.93 
Trichuris dysentery syndrome is an even more serious 
manifestation of heavy whipworm infection, resulting in 
chronic dysentery and rectal prolapse.93 Whipworm 
infection can also exacerbate colitis caused by infection 
with Campylobacter jejuni.94

Hookworm infection
In hookworm infection, the appearance of eosinophilia 
coincides with the development of adult hookworms in 
the intestine.95 The major pathology of hookworm 
infection, however, results from intestinal blood loss as a 
result of adult parasite invasion and attachment to the 
mucosa and submucosa of the small intestine.13 
Hookworm disease occurs when the blood loss exceeds 
the nutritional reserves of the host, thus resulting in 
iron-defi ciency anaemia. The presence of more than 
40 adult worms in the small intestine is estimated to be 
suffi  cient to reduce host haemoglobin concentrations 
below 11 g/dL,96 although the exact number depends on 
several factors including the species of hookworm—
A duodenale causes more blood loss than N americanus—
and the host iron reserves.13,97 The clinical manifestations 
of hookworm disease resemble those of iron-defi ciency 
anaemia from other causes. The chronic protein loss 

from heavy hookworm infection can result in 
hypoproteinaemia and anasarca.13 Because children and 
women of reproductive age have reduced iron reserves, 
they are at particular risk of hookworm disease. The 
severe iron-defi ciency anaemia that can arise from 
hookworm disease during pregnancy can have adverse 
results for the mother, the fetus, and the neonate.34

Diagnosis and treatment
In their defi nitive host, each adult female whipworm or 
hookworm produces thousands of eggs per day, and each 
female ascaris worm produces upwards of 200 000 eggs 
daily (table 2). Because many soil-transmitted helminth 
infections present without specifi c signs and symptoms, 
the clinician typically needs some index of suspicion, such 
as local epidemiology or country of origin, to request a 
faecal examination. In some cases, especially of hookworm 
infection, persistent eosinophilia is a common presenting 
fi nding.98 Several egg concentration techniques—eg, 
formalinethyl acetate sedimentation—can detect even light 
infections.12 The Kato-Katz faecal-thick smear and the 
McMaster method are used to measure the intensity of 
infection by estimating the number of egg counts per gram 
of faeces.99,100 Ultrasonography and endoscopy are useful 
for diagnostic imaging of the complications of ascariasis, 
including intestinal obstruction and hepatobiliary and 
pancreatic involvement.90,101

The treatment goal for soil-transmitted helminth 
infections is to remove adult worms from the 
gastrointestinal tract (table 7). The drugs most commonly 
used for the removal of soil-transmitted helminth 
infections are mebendazole and albendazole. These 
benzimidazole drugs bind to nematode β-tubulin and 
inhibit parasite microtubule polymerisation,104 which 
causes death of adult worms through a process that can 
take several days. Although both albendazole and 
mebendazole are deemed broad-spectrum anthelmintic 
agents, important therapeutic diff erences aff ect their 
use in clinical practice. Both agents are eff ective against 
ascaris in a single dose. However, in hookworm, a single 

Figure 3: Girl from Paraguay with heavy ascaris infection before deworming and worms extracted
Photographs courtesy of Dr Nora Labiano-Abello (left image) and reproduced with permission reference 10 
(right image). 
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dose of mebendazole has a low cure rate and albendazole 
is more eff ective.105,106 Conversely, a single dose of 
albendazole is not eff ective in many cases of 
trichuriasis.107 For both trichuriasis and hookworm 
infection, several doses of benzimidazole anthelmintic 
drugs are commonly needed. Another important 
diff erence between the two drugs is that mebendazole is 
poorly absorbed from the gastrointestinal tract so its 
therapeutic activity is largely confi ned to adult worms. 
Albendazole is better absorbed, especially when ingested 
with fatty meals, and the drug is metabolised in the liver 
to a sulphoxide derivative, which has a high volume of 
distribution in the tissues.108 For this reason, albendazole 
is used for the treatment of disorders caused by tissue-
migrating larvae such as visceral larva migrans caused 
by Toxocara canis. Systemic toxic eff ects, such as those 
on the liver and bone marrow, are rare for the 
benzimidazole anthelmintic drugs in the doses used to 
treat soil-transmitted helminth infections. However, 
transient abdominal pain, diarrhoea, nausea, dizziness, 
and headache commonly occur. 

Because the benzimidazole anthelmintic drugs are 
embryotoxic and teratogenic in pregnant rats, there are 
concerns about their use in children younger than 
12 months and during pregnancy. Overall, the experience 
with these drugs in children younger than 6 years is 
scarce, although evidence suggests they are probably 
safe. A review of the use of the benzimidazole 
anthelmintic drugs in children aged 12–24 months 
concluded that they can be used “if local circumstances 
show that relief from ascariasis and trichuriasis is 
justifi ed”.109 Both pyrantel pamoate and levamisole are 
regarded as alternative drugs for the treatment of 
hookworm and ascaris infections, although the former is 

not eff ective for the treatment of trichuriasis and they are 
administered by bodyweight. 

Morbidity control through deworming 
The use of anthelmintic drugs nowadays is not restricted 
to the treatment of symptomatic soil-transmitted helminth 
infections; the drugs are now used also for large-scale 
morbidity reduction in endemic communities. Increasing 
evidence suggests that chronic infection with soil-
transmitted helminths results in impaired childhood 
growth and poor physical fi tness and nutritional status. 
The causal link between chronic infection and impaired 
childhood development is extrapolated from the recorded 
improvement in these features after deworming.110–115 The 
mechanisms underlying these associations are thought to 
involve impairment of nutrition, although there is little 
specifi c evidence to support this assumption.112 

Regular treatment with benzimidazole anthelmintic 
drugs in school-age children reduces and maintains the 
worm burden below the threshold associated with 
disease.31,110 The benefi ts of regular deworming in this age 
group include improvements in iron stores,112 growth and 
physical fi tness,112,113 cognitive performance,4 and school 
attendance.4 In younger children, studies have shown 
improved nutritional indicators such as reduced wasting, 
malnutrition, and stunting, and improved appetite.111,114 
Treated children had better scores for motor and language 
milestones in their early development,115 although some 
investigators still fi nd this relation controversial. Relevant 
to these fi ndings, administration of anthelmintic drugs to 
children infected with soil-transmitted helminths from 
1 year of age is now deemed appropriate.116 The patents on 
anthelmintic drugs recommended by WHO have expired, 
and the drugs can be produced at low cost by generic 
manufacturers. The cost of drug delivery is also low 
because after simple training, teachers could be involved 
in deworming.1 If women in endemic areas are treated 
once or twice during pregnancy, there are substantial 
improvements in maternal anaemia117,118 and birthweight 
and infant mortality at 6 months.34 In areas where 
hookworm infections are endemic, anthelmintic treatment 
is recommended during pregnancy except in the fi rst 
trimester.119–121

An important factor in treatment is reinfection. After 
community-wide treatment, rates of hookworm infection 
reach 80% of pretreatment rates within 30–36 months.122 
A lumbricoides infection reached 55% of pretreatment 
rates within 11 months123 and T trichiura infection reached 
44% of pretreatment rates within 17 months.23 Despite 
reinfection, however, regular treatment to reduce the 
worm burden consistently could prevent some of the 
sequelae associated with chronic infection.

Drug resistance against the front-line anthelmintics is 
widespread in nematodes of livestock as a result of 
frequent treatment of animals kept in close proximity 
and with little gene fl ow. If such conditions were 
replicated in human nematodes, drug resistance would 

Infection Drug Dose

Adult Child

Ascariasis Albendazole† 400 mg once 400 mg once

Mebendazole 100 mg twice a day for 3 days 100 mg twice a day for 3 days

500 mg once 500 mg once

Pyrantel pamoate 11 mg/kg (maximum dose 1 g) for 
3 days

11 mg/kg (maximum dose 1 g) for 3 days

Levamisole 2·5 mg/kg once 2·5 mg/kg once

Hookworm Albendazole* 400 mg once 400 mg once

Mebendazole 100 mg twice a day for 3 days 100 mg twice a day for 3 days

Pyrantel pamoate 11 mg/kg (maximum dose 1 g) for 
3 days

11 mg/kg (maximum dose 1 g) for 3 days

Levamisole 2·5 mg/kg once; repeat after 
7 days in heavy infection

2·5 mg/kg once; repeat after
7 days in heavy infection 

Trichuriasis Mebendazole 100 mg twice a day for 3 days 100 mg twice a day for 3 days

500 mg once 500 mg once

Albendazole* 400 mg for 3 days 400 mg for 3 days

*Modifi ed from the Medical Letter on Drugs and Therapeutics, Drugs for Parasitic Infections.102 †In children of 1–2 years the dose of 
albendazole is 200 mg instead of 400 mg, based on a recommendation in the Report of the WHO informal consultation on the 
use of praziquantel during pregnancy and lactation and albendazole/mebendazole in children under 24 months.103 

Table 7: Treatment of soil-transmitted helminth infections*
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soon arise.124 Human nematodes have longer reproducing 
times, are subjected to less frequent treatment (the 
treatment interval is longer than the parasites’ generation 
time), and the treatment is targeted at certain 
populations, thereby sparing a circulating pool of 
sensitive alleles, which should reduce selection 
pressure.125 Nevertheless, the eff ectiveness of drugs 
must be closely monitored, especially in areas where 
drug pressure is high, such as regions where mass 
anthelmintic chemotherapy is also administered for the 
elimination of lymphatic fi lariasis. Development of 
sensitive methods for the early detection of anthelmintic 
resistance are part of the research agenda, with special 
attention being given to in-vitro tests and molecular 
biology techniques that could be adaptable to fi eld 
conditions.9 Because no new anthelmintic drugs are in 
late-stage development at present, the eff ectiveness of 
available products needs to be preserved.

New control methods
Concerns about the sustainability of periodic deworming 
with benzimidazole anthelmintic drugs and the emergence 
of resistance with widespread use have prompted eff orts to 
develop and test new control tools. Nitazoxanide, a 
nitroimidazole compound that is increasingly used in 
children with giardiasis and cryptosporodiosis, is also 
being explored as a broad-spectrum antiparasitic agent 
with anthelmintic properties.126 Tribendimidine has low 
toxicity, yet broad-spectrum activity against many soil-
transmitted helminths.127 In randomised studies in China, 
tribendimidine was equivalent to mebendazole and 
albendazole for the treatment of A lumbricoides, T trichiura, 
and hookworm infections, and better than these drugs for 
N americanus infection.127 A study comparing tribendimidine 
with albendazole for the treatment of hookworm is under 
way in Africa. Combination therapy with drugs with 
diff ering modes of action is an alternative strategy to 
improve effi  cacy and lower the risk of resistance.9 For 
example, combinations of levamisole with mebendazole 
and of pyrantel with oxantel are more eff ective than any 
single drug.2,128

Vaccination remains the method of choice to control 
soil-transmitted helminth infection, because it off ers 
the possibility of a simple, single step for the 
interruption of infection, disease, and transmission. 
Several substantial obstacles impede vaccine 
development against soil-transmitted helminths,39 
including the lack of good animal models and a poor 
understanding of the events that permit soil-transmitted 
helminths to endure for years in their human host in 
the face of a potent immune response. Nevertheless, a 
hookworm vaccine consisting of the recombinant larval 
antigen ASP2 is eff ective in animal models (dogs and 
hamsters) and has shown a protective association in 
immunoepidemiology studies in two continents.53,78,129,130 
The Na ASP-2 hookworm vaccine is now undergoing 
clinical development in human beings.131

Conclusions
Soil-transmitted helminth infections in people will remain 
a worldwide public-health threat for as long as poverty 
persists in the developing world. The UN agencies have 
appropriately recognised the health and educational eff ect 
of these infections in children, and have taken steps to 
distribute anthelmintic drugs in schools and to undertake 
chemotherapy programmes on an unprecedented scale. 
Large-scale deworming is necessary to reduce the 
worldwide morbidity of these infections, but without 
improved water supplies and sanitation this approach 
cannot be relied on for sustainable reductions in parasite 
frequency or intensity of infection. The infrastructure that 
has been established for deworming of children in schools 
is expected, however, to facilitate introduction of new 
anthelmintic vaccines and other control tools,131 and some 
of the proposed interventions for the integrated control of 
endemic neglected tropical coinfections such as lymphatic 
fi lariasis, onchocerciasis, schistosomiasis, and trachoma.132 
Such strategies could result in substantial reductions in 
the worldwide disease burden in the years to come.
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