

- Protective immunity is acquired
- only after many years (decades)
- Poly-parasitism
- Greatest burden is in children
- Malnutrition, growth/development retardation, decreased work
- Morbidity proportional to worm load

Phylum Platyhelminths

General Properties (some variations)

- Bilateral symmetry
- Generally dorsoventrally flattened
- Body having 3 layers of tissues with organs and organelles
- Body contains no internal cavity (acoelomate)
- Possesses a blind gut (i.e. it has a mouth but no anus)
- Protonephridial excretory organs instead of an anus
- Nervous system of longitudinal fibers rather than a net
- Reproduction mostly sexual as hermaphrodites
- Some species occur in all major habitats, including many as parasites of other animals.

Helminths (Parasitic worms)					
Kingdom Animalia					
Phylum Platyhelminths		Phylum Nematoda			
Tubellarians Free-living	Monogenea Monogenetic	Trematodes	Cestodes		
worms	Flukes	Flukes			

Monogeneans

- Taxonomy still controversial
- Look similar to Digenetic flukes
- Ectoparasites 0.3 mm 20 mm
 Gills or body of fish a few occur on amphibians & reptiles
- Large holdfast organ at posterior end
 Haptor may have hooks
- May also have holdfast organ at anterior end
- Prohaptor

Monogenean Life Cycle

- Not well understood
- Direct development
- Monogenean = 1 generation
 1 egg = 1 adult
- Single host
- Niche specificity as well
- Eggs contain long filaments
- Eggs hatch in the water
- Hatching releases an oncomiracidium that is ciliated
 - Egg laying usually coincides with breeding season of host

Oncomiracidium Short-lived form - free swimming

Monogeneans

- Generally non-pathogenic infections
 - Crowded conditions will promote higher parasite #'s
- Some economically important
 - Fish hatcheries large die-offs
 Attachment to gill filaments loss of blood, epidermis, increase in bacterial infections
- Hermaphroditic
 - Cross fertilization vs. self
 - Diplozoon juvenilles will fuse and
 - this promotes maturation of reproductive tissues (Cross)

Helminths (Parasitic worms)					
Kingdom Animalia					
Phylum Platyhelminths		Phylum Nematoda			
Tubellarians	Monogenea	Trematodes	Cestodes		
worms	Flukes	Flukes	Tapeworms		
	5	CHUSS TITUENULUU			

Digenean (di = two) (genea = beginnings) Flat, leaf-like structure Ventral and oral sucker Obtain food by absorption through cuticle (tegument) Hermaphroditic and separate sexes

Tissue Flukes Clonorchis sinensis

Blood Flukes

Sch

Fasciola hepaticaParagonimus westermani

Schistosoma mansoni
 Schistosoma haematobium
 Schistosoma japonicum

- Egg = shelled embryo
 - Operculum cap lid-like specialization
 - May need to embryonate
 Water avoid dessication
 - Temperature is important
- Eggs are killed by freezing
 Eggs hatch release miracidium
 - Most just require water
- Others hatch only when eaten by suitable host
- Miracidium ciliated larval stage
 - Very active free-swimming form
 - Seek out intermediate host (molluscs)
 - Penetrates tissue with auger like motion - about 30 sec to penetrate!

- More active form, posses a simple gut
- Mouth, and birth pore @ anterior end
- Develop into cercaria

Life Cycle Terminology

Cercaria - very small

- Leaves the snail to find the next host
- Looks like a miniature adult with a tail
- Utilizes tail for swimming, and will lose
- it as it penetrates the next host
- Metacercaria
 - Infective stage for the definitive host
 - "Resting stage" in the life cycle
 - Miniature adult curled up inside a
 - tissue cystWaiting for intermediate host to be eaten by definitive host.

0.2mm

Trematodes of Medical Importance

- Schistosoma, blood flukes
- Clonorchis & Opistorchis, liver flukes with metacercaria in fish
- Paragonimus, lung flukes with metacercaria in crabs
- Fasciolopsis, Fasciola, Dicrocoelium, intestinal and liver flukes with metacercaria on plants

Fasciolopsis buski - intestinal fluke

- Definitive Hosts: Humans and Pigs
- <u>First Intermediate Hosts:</u> Aquatic snails, particularly Segmentina and Hippeutis. Second Intermediate Host: Aquatic (freshwater) vegatation, including water chestnuts, water caltrope, lotus, and bamboo.
- Geographic Distribution: Mainly Orient. About 10 million people are infected.
- <u>Transmission to D.H.:</u> Ingestion of metacercaria on vegetation.
- Location in D.H.: Small Intestines. Each worm can produce 25,000 egg/day!

Pathology

- Pathology: Generally very little. Attachment sites can ulcerate, and worms may obstruct small intestines and interfere with food absorption. Absorption of worm waste results in verminous intoxication similar to tapeworms. Symptoms: Depends on the number of worms (worm burden). Can
- include nausea and chronic diarrhea.

Fasciola hepatica - liver fluke

Definitive Host: Herbivorous mammals, occasionally

humans First intermediate Host: aquatic snails

<u>Second intermediate Host</u>: Metacercaria form on aquatic plants

- Geographic Distribution: Cosmopolitan. Very common in western U.S. livestock. .
- About 2.4 million humans worldwide are infected. .

Transmission to D.H .: Ingestion of metacercaria. Human infections usually come from ingestion in water or on water cress.

Location in Definitive Host: Liver, particularly bile duct.

Disease Pathology Comit Disease: first described as "liver rot" Human infection is common in Europe, Africa, S. America Pathology: Migration through liver can cause necrosis. Feed on the cells of liver and blood. Adults cause edema and inflammation in bile duct. Symptoms: Anemia, cirrhosis, jaundice, similar to other liver diseases.

- Diagnosis: Eggs in feces, liver blockages plus history of eating water cress in U.S. ELISA test.
- <u>**Treatment:**</u> Triclabendazole is drug of choice for livestock and humans (Rafoxanide).
- Praziquantel IS NOT as effective

Fasciola Notes

- F. hepatica and F. gigantica are closely related species
- Parasites are relatively common in the US.
- Up to 17% of Montana cattle are infected, but human disease in the US is rare.
- Pasture rotation is an important control mechanism to reduce livestock infection

Ecology of fasciolosis, ponds and creeks in direct vicinity of pasture

Paragonimus westermani - Lung Fluke Definitive Host: Humans and other fish-eating mammals Large reservoir in canids, felids, mustelids, and viverrids (civets). First Intermediate Hosts: Aquatic snails

- Second Intermediate Hosts: Freshwater crabs and crayfish
- Geographic Distribution: Asia and Oceania
- Oceania
 particularly Japan, Korea, and the Philippines
 Approximately 20.8 million people. Transmission to D.H.: Indercooked crustaceans. Pickling does not kill metacercaria Learding in definitive indefinitive indef
- Location in definitive host: Lungs, sometimes other organs.

Pathology Pathology: Adults in lungs stimulate inflammatory response resulting in granulomas - fibrotic capsule formation. Movement of worms to heart or brain causes death. Symptoms: Disease called Paragonimiasis. .

- Chronic cough, , bronchitis, difficulties breathing, sputum with blood or brownish streaks.
- When moves to brain, can cause blindness, paralysis, disequilibrium, sudden onset of epilepsy.

Paragonimus migration

- Juvenille worms can migrate to other sites
- Case: migration to the brain
 - Large lesion
 - Worms and eggs cause the pathology
 - Inflammatory response

Size Comparison - Flukes

- Fasciolopsis buski is the largest - up to 7.5 cm
- Fasciola hepatica up to 3.0 cm
- Paragonimus sp. up to 1.5 cm
- Clonorchis up to 2 cm

Assignment

What other trematodes enhance transmission?

Find other examples of trematode that enhance tranmission.

Email the trematode and the associated life cycle (link)

Email a primary Journal article (PDF - not a link) related to the enhanced transmission